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Abstract

ABSTRACT

With the excessive exploitation of natural resources and grave pollution of
environment, energy problem and environment problem have become the world’s
major problems. New ideas and techniques came up and researchers tried to solve
these problems from many ways.

The mechanism of photocatalysis is that after excitated by light irradiating the
photo-generated electrons and holes can be formed in the semiconductor conduction
and valence band, respectively. The formed electron-hole pairs, after being separated
and transmitted to the surface area of the photocatalyst, will participate in the
photodegradtion process of water or organic compounds. The photocatalytic process
can break water up to oxygeh and hydrogen, or mineralize the hazardous organic
chemicals to carbon dioxide, water and simple mineral acids. thus one of the major
advantages of the photocatalytic process over existing technologies is that there is no
further requirement for secondary disposal methods. Moreover, photocatalysts can be
reused or recycled, which means the process can be operated in a low cost.
Photocatalysis, as one of the novel green process to solve both of energy problem and
environment problem, has gain more and more attentions these days.

The preparation of photocatalysts with high photocatalytic properties is most
important in photocatalysis technology. An ideal photocataylst should be stable
inexpensive, non-toxic, and highly photoactive and good visible light absorptive. TiO,
is known as the most extensively and most effective photocatalysts. However, because
of the size of its band gap, TiO, is effective only under ultraviolet irradiation. Sunlight
is comprised of less than 4% ultraviolet light, so it can not make full use of the solar
energy, which confined its commercial application. Thus it is important to develop
new photocatalysts to extend the absorbed wavelength range into the visible region,
where less expensive light sources exist.

In this dissertation, we discussed the microwave hydrothermal synthesis of
BaTiOs and it’s Nb doping, niobates and niobate-titanates synthesis by citrate sol-gel
combustion method, and their photocatalytic properties by photodegration of
methylene blue. The following is the content of this paper and the results we’ve got.

In chapter 1 we briefly introduced the research background, the context of

photocatalysis, the type and principle of photocatalytic reaction, appliance and
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changing quality of photocatalysts and research review of titanates and niobates. On
the base of these theories, we brought forward our research ideas and research plan.

In chapter 2 we introduced the raw material, instruments charaterzation methods
and photocatalysis testing device used in this dissert.

In chapter 3 we synthesized BaTiO; powers through microwave assisted
hydrothermal method. We studied the crystal type of the as-made BaTiO; power,
proposed that the BaTiO; synthesized by microwave assisted hydrothermal method
hase the structure of pseudo-tetragonal phase. And because of its large energy gap and
high dielectric constant, pure BaTiO3 showed low photocatalytic property. After
doping Nb element into BaTiO; nanocrystal, we saw a lifting of photocatlatic
efficiency. An apparent reaction constant- doping constration curve was drawn and the
best doping constration was about 0.1% mole ratio.

In chapter 4 we synthesized MNb,Os (M=Zn, Mg, Ni, Co, Fe) photocatalyst by
citrate sol-gel combustion method. The basic shape of them were laminated structure
agglomerated by smaller particles with 30~40nm in diameter. We studied the
photoabsorption and photocatlytic efficiency of them and found that NiNb,Og showed
the best efficency with MgNb,Og and ZnNb,Og showed less efficiency. Fe and Co
niobate showed good photoabsorption but low photocatlytic efficiency, we considered
that complicated energy level structure affected their performance.

In chapter 5 we prepared some divalent metal and trivalent mental
niobate-titanate through citrate sol-gel combustion method. We studied the
relationship between their photoabsorbance and photocatalytic efficiency, and a
preliminary explanation was given.

In the last chapter, a concise summary of the contents was given and some

advices were proposed.

Key Word: Photocatalysis; Barium titanate; Niobates; Nano crystal; Microwave

assisted hydrothermal
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1.1 XkpELRTsTHuR

1972 %E Fujishima #1 Honda 7f Nature 2%& £ &K R T F TiO, £ 4 e PHARHAT
2406 R Ho0 2 Hy 71 O, BB FTIE 3, M SE T He it A 7E RE U5 A 7 T Y
WATAME: 1976 & Garey Al TiO, JMELMEIBER T £ AB K F &P, 1977
4 Steven 2 A\PILMEILEL CN OCN', XHTF T ML ARZEF R H IR
AR E, fAEEHAEENRERNERER L EENHEMNE,
AL ATIE AR S 5 X TRABEARE—BRFBRAFEEHRE
BN A TFaEHFSRA. FERL. BLEEM. KHEEEBERSEE, B
H., L%, HH. KEFENHATEESS S5 TR, BhTERIABREY
AR SR K B . AN KRR, SEBFRTEAR
WXRE, HPHRERS N4 PEARPRAE SIS S5 A R E S5 LY.

SAFRTM TIO HRRE A 3.0eV, XNAERIK A A<415nm. XMEBR %
BFEBEKAESRITESI TR, HEBERMEEPHSHERK. HE 1-1
AP aEE 5 A B AT LUE o] RS B se B LS KPR A S RERH) 4%, T
d KPR YR B 43%Ma] WA R R H B EINA.

SERBE A . RAR i) B BRI T KM ML, 0 Fujishma K952
K TiO, MEM RN ERT 1%, XEAHARME SR R SR EA
JR 2% 3 DA B 3838 6 i AL b R G BT D B IR b3 . T SRR K B £ R BT BB
AR ML R, W SITO™”, KiNbOi/*'?, NayTicOns!'", BaTisO4!'",
Z10,1"%3), Ta,05' 850 K,La, Ti3050"71% . 2001 4R E R P8 At it K3
BB B (In1WNixTaOg), BIREI T AT ML MK FIA, W ERFA AR
SRKBIEHR T FroA R, MIIXFEHR T BilaNbO, ), Bi;MNbO; (M =
Al Ga, In)?f1 Bi;MNBO; (M = A, Ga** and In*") P& & 5 & E ALY L (b
¥l B%E In TE, IIXFFRE T InNbO,, InTaO,4 F InVO, A LA 1262,
Kudo A &PV g ABI9Y T — 40 &L RFIHOR ML R AR K IR S, thiR78
T BAF R AL R
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AR E R Rt HI T E R RAL, RELEREA KX
FAREREFUNRBEOCEENRRE, AT HLANER. BXERE
HRU Ti0 AN, HERDRBULARERMKIMIEE, FREH
B oK AR AL . ST BREOE WA RAE RS, ERERRHE
AL EALHURTRR, RESARBEELESN.
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Fig. 1-1 Energy distribution of solar radiation.
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FMEA R B REE T RBP4 BT BE . @R R BT ¥
Bk, HEFAEL, ARAFIENHETHNFNILNZRTHIW. ©
HAIHZERZRTRABFSMHOERZERY, FUREH Eg XKRR, WK
BB RET To, RN 3.2¢V. X4 FUZF N TRERTHR
BemE R R R, HRFNBIBTFREAMFRER W, ANTTUES
WA BB ERTFRER. EREHRRRRESFREEZ EARXR
T RPIFTR:
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RBOR TR EE BT 27O B BRI ERE, B R TR
BEEEY, BRABP0)ER. AEBRTEIRNERLZE, Ll FH AR
5RMTHSAERANMRZARERTES, KdEREH2ANZLERR, £
ERRANHEREAFANERHOLREC, B 12 AESEA N BB RE L
MAERFZRN =LA SREBErEE. WEAR, —REERNDT hv B9
BB ERIE, R R RE T MIEALER AT REBUR i L — AN
TERIER®W, ANENHLET—ANZR, BRFETAERTFERN. KE
RFERATHEREERMPAREER, BRE A 3R, SEdRrT
BRREER, &5 B R, REVERTRZEREIHNEE C 5D EBM
AERBEIAR SN R ERNNBRRE, 250K,

Surface
Recombination

B 12 KR, RERTFEAX ML 5B

Fig. 1-2 Mechanisms of photocatalysis:

separation and transmission of photoinduced electron hole pair.

BT 7O B MBI RIR TS, AR R R OH [
KA FRAENYEGHAT UE L ERFHEALY, REWTF:
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Bk g S B, 7E TiO, K L OH-HIEREE % 6x10" M's?, K& 0, &
BERZM. MRAMELEA ESRFALRIER, OH-BR—HEHIEFERINYA.
CERTER M AT R B BARE AL Y R EEM R, —RICAELELFH
FESMLN, TUELEEEYELBRUNZIREINY, NERYLTELER,
L ENRREEH. REREFRHERREERRK TEFARE LME,
ERANHBTFEERNRES, XUEAELUFEUCEEELN RN,
O* B 743 R FIER G HERUCH RE OH-H 5 — M KRIE:

e, t02.ads) 03" 0;+H"—HO»

2 HOy—02tH20; H,0,+ O; »OH+OH +0,

¥ SRR R BN R B R, T RE T, TO %
HEALRERRKE B 3 S AL EAA R OREZ R RS I EALRE ) AT EASY
RIRFEE VY. T TiO, RBUR = EZ AR AL AR ER AL T4 3.0
eV, 5ES11.36eV MREN 2.07eV HILE, AEZRHEMMERS.
BLRESS 3T LI AR EAL R BN LR D .

FUR RSO A R0 HEAL RTHLIER, 392k SRR LALH B A B K
BRI BEAAEH, DRXEERTFZINNSEAEZMEN. SENEELETH
AR BN, MEE L HBBCRPE AR RIS A G4 A48 % RE R
PLBHEER Y, LUES HyH M OHY/0, MIE T R AL, Bid K H R LR AT 40
Hy/H' 1 OH/0, MEAE R AL Z(E K 1.23eV, BIE S Bt BEF S 4
MRIBEH N LTE 1.23eV U b, BEHRER B NRINAEX A BEH.

Yong Xu % APIxt BEHHARATIAN, FELIHRESB/IT pH. BEN
ENE ML ERNEMRR, BEFRINE REAWE pH=0 155 T HIEES
PLEWE 1-1 Prm. HEREERSR, ANDIBENETEROERRE S
RAKBIBR A B ZRFARK, Filt, & 1-1 ¥RITEFMH, FEENEIENL.

LML ERFSHRIESY, aEARUERERP. 24
2. BRLBRBRYFANFEE RSN, EREFHER. ¥4k
BALEEAR, — PRSI ERRA—FRA ANARIFER,



R 1-1 BRENY LS gx s B S5 a gt
Table 1-1 Absolute electronegativity (x), band gap (Eg), energy levels of conduction band edge
(Ecg) and flatband potentials at pHzec (Ug") with respect to Absolute Vacuum Scale (AVS), and

measured or estimated pHzpc for semiconducting metal oxide minerals

Mineral x E, Ex vi P Ref for Ref for
ev eV eV ev [ pHze:

A3.0 529 120 4569 120 a Py
ATI0; 5.44 360 ~164 8.23 b

BaTiO; 5.12 3.30 —4.58 —-4.21 9.00 3 ]
BLO, 6.23 2.80 483 -4.82 6.20 d

Cdo 5.71 220 461 —4.62 1160 [ ]
CdFe0, 583 2.30 -4.68 -4.89 722 ¢

Ce;0y 5.20 240 400 8.85 i

Cod 5.69 2.60 -4.39 7.59 b

CoTi0, 5.76 225 484 741 k

Cr0; 568 350 =383 8.10 b ']
Cud 5.81 1.70 496 —4.89 850 ¢ ]
Cu:0 532 220 ~422 8.53 [

CuTiOy 581 299 -4.32 729 k

Fed 553 240 —4.33 8.00 b

Fe:0s 5.88 220 -4.78 -4.69 8.60 ¢ ]
Fe;0¢ 5.78 0.10 -573 6.50 t ]
FeOOH 6.38 260 -£.08 .70 g t
FeTiO; 5.69 2. —429 -4.56 630 [ ] ]
G8.0, 535 480 =295 847 b

HgO 6.08 1.90 <13 7.30 b ]
Hg;Nb,O- 6.21 1.80 ~531 -5.05 625 )

Hg;Ta,0, 6.24 1.80 ~534 6.17 h

in:0; 528 2.80 -388 8.64 b

KNbO; 528 330 364 8.62 b

KTa0, 532 350 -357 -3.70 8.55 h

La-0, 528 5. -253 1040 i m
LaTi;0- 5.90 4.00 -390 7.06 b

LiN0O, §.52 3.50 -377 8.02 b

LiTad, 555 400 =355 794 b

MgTio, 5.60 370 375 781 b

¥n0 529 360 =348 8.81 b

MnO; 5.95 025 -5.83 4.60 j |
MnTiO, 5.58 3.10 -4.04 7.83 b

Nb,Og 6.29 340 -4 59 -4.16 6.06 h

Nd.O, 5.21 470 -287 8.81 i

NiO 575 350 —-4.00 10.30 b s
NiTiO, 5.79 2.8 470 7.4 d

PO 542 2.80 402 —4.46 8.29 d

PoFe O 5.85 2.30 470 -5.20 747 c

Pa0 5.79 1.00 ~529 7.4 b

Prz0y 5.19 350 =324 8.87 i

Sb20; 6.32 300 482 598 b

Sm0s 528 440 =207 B8.69 i

Sn0 568 4.20 -359 759 b

SnO; 6.25 3.50 —4.50 -4.55 430 d ]
S0, 4.94 340 -3124 -3.61 8.0 [3 ]
Ta:0s 6.33 400 -4.33 -3.89 250 a L]
Tb:0;5 5.33 380 344 8.50 i

i, 5.81 320 421 -4.16 5.80 k (]
10, 5.35 1.60 455 8.47 b

Y05 6.10 2.80 470 484 6.54 ¢

WO, 6.59 270 =524 -5.28 0.43 2 ]
Y520, 547 490 -302 8.15 i

YFe0, 5.60 2.60 -4.30 -4.60 7.81 ]

n0 579 320 -4.19 -3.91 8.80 d ]
2nTi0, 5.80 3.06 421 7.31 k

2r0; 5.91 5.00 341 -3.08 6.70 L) [

Notes: a = Butier anc Giney 1978: b = Quarto et 8! 1937; ¢ = Nozik 1978; d = Haloueni and Deschavers 19E2; e = Rodnguez et al. 1598 ¢« Zhang
anc Satpathy 1991, g = Brezonk 1993, h = Kung et al. 1977, 1 « Sheiykh et al. 199€, ; = Shuey 1975, k = Ocsaws et 3l. 1989; | = Sverjensky 1994,
m =Yoon et & 1579.
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WA Tk 7= 5 K % UL Tiop A LT, {ER TiOo, MBI RSN B
Byeheit g, RETHNA. Bk, FESHMTRRIFREFHRATRA
MR E AR R, SRIZFIR R, RENEG BN, GHRE, Bl
PR ENREETEENER TR AR DN S BRBREN, AR
WA, BEZIAFIMERMUBEMEHEAD, BFEREIIMENRERESF
FHEMEW, FHERE AR R S R R BT R AR R R X LA T
HEH K. FrankP% B416 130 BHERRTATFABKFENTIHED LT
FHTRE, HESHRATHENSHEEZENXR. B 1-3 4 Fank FAES
% LA B FE R ERNE, A —PEdR RS (One Step System, &
1-3A Fi7R) Rt B R 45(Two Step System, B 1-3B 5 1-3C).

Potential / V (NHE)

A B
+0.0V ¢ "0 ¢ -0
E*(H,0'/H,) Hy+ OH™ Hy+ OH™
— :-(-A D*
B
A~ i_.\‘__
0,+H,0* 0,+ H.0*

A S S N Rl

H20 — Hzo ——

B 1-3 pH=0 B AR A REAL A BE R AL B P
Fig. 1-3 Potential energy diagrams for photocheical water splitting at pH=0.
(A) single semiconductor system; (B) with an electron accepror;

(C) with an electron donnor; (D) dual semiconductor (z scheme) employing a redox shuttle.

NF—H I RRAS, ATFHEAME—SRIHSH, RE—TETFHRE,
BTV ER AL AR, MELTIA SR BN Y R A RTTREM b, BEXT
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KMKFFTR 1.23eV MRE, DMERTERSARBCKE: FNEEHNSHE
M3t Re AL B B KB AL AL IR0, XHEA SRR TMEREBS KD
Fo ER LI AZHNA B LR R FEENT LK, W8
KT G TIO, AR E N 3.2eV. BEMBEHAMNAR T AR, EAFTHE
THHEB. X TXMHARZHHR, ERHHEABRIESR. BRI —L
FEREETF, MRARELR RSRIAEHEE, REHLETRAERARI,
RE A ELBR.

XFRALIBERSE, EFHAR—KKTEESBEURIERLE, EN
FORIFESAE, TR —Fr RS A R e i B 1-3 P ILAC AL A AL AR
Ratk. mE 13, BFRE—MET, \BYRHNFRIRH T, REB
SWH LR THTRAEEESS CYRIMNELE, BRE—METFKIH C R
W, BBAKSTF, TRKISRE. N TFXMRGKRKE, FHHELXTEEMILA
HABHHEETFHREBUEREWLELRINEIERE. KEZXKNESYF
SEeEAME, NEEHFSENHHE, XFREFENESKTE, REFRT
BEZREBRONBR. ATREHEEBFEBOER, AMSIATELE
J& ¥ F X} D(Shutter redox mediator), X7EZ J5HIA BT EEFARR

BRI, CtEAMENELERIRFREERBR. B8, 8HeR
FGIANEIE R BT X E LA T .

1.3.1 $%: SIANRRER

BR—HRBEMBMEH RS EH RN EEFR. ERELTES, AR
MMEEVESERTERE, REBTZINNSEEBRE, FEIANKMET
FHATB BN HESIABTFHAR, BRUAPAERETBRANELRET
BRPFHLEL

a) SRETHBR

SREATBAREEXFABETBAERE T, 5 NBPEAE R
R, REWBTF-ZRMNES. 1990 4 llepergma B RN L Sk
FPBEARANSHERBETE, FFEMEUERESE. SREFBRETR
HIREFBR AR EIBR, —H 5 AZRAES, o7 A RSO LA AL BOR
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B—HHEBASIEMBRBEERABTEROEESPL, ATRFEELZR. T
BAMMNB®RTERENRTMETIBHN R, ERRABF-ZERANHES
iy, BRERABEHREENTERIT, TERER, E5%EMNTBREHR
CEALKIIB AT T E R . Choi IR T 21 HEREFHETRIMN
TiO, B FHIBRE, FRERERY, 0.1%~0.5%H Fe*', Mo™, Ru**, 0s**, Re™,
V*H RO HIB B R B LRI, T Co™ Rk AP HIBAARRMHIT;
BHERE, AHEWERRTFHRNSREW LT, Mg™, AP, Zn™, Ga*, Z+*, Nb™,
Sn*, Sb™*Fl Ta* S B2 Z MR /N. Zou ZGH% A7E InTaO4 &% H A Ni,
BEFEBE N NTIAR SR P ETFERBEAN In’, BUE InTaO, &M
/No BEE In-In BHIZEE, ERUEYHBRTFERRERL, TR LA
X#3).

BAEARRBEL S REEH, £5MRRMELTIM TiO,, ZnO FH
REIRELY), SWEEER, NERETHEZEEED BRATRATIE
MRGEMIRIBEIR, AWTOEREAL T R EALYERE, TUB R /D AR LR R
MR EWHER. FIUEHBRIER, TRESHERNERMLED.
EHERU, T G M AEKRR 2 R E 4 MR KRR £hiX 26 ABO; B IL &Y
SHERETFEDBEILER, BEAECHBREET.

b) F&RBETFBR

ERBETBRERESHABRENBRITR, BRERETBRATEENE
M GBEH, ERRANSHEEY, I ENRBIBABTZRIIKB,
EHETEANSERR. ATREESZEIHELMENESE, BEEFR
WS EEEURKE R, AI#TTEHER. FLAREHNEEESH
Tiox YN, ERXEREFNERNEEUAREHFNESIETET —EN
Bepa, FEAFNERZRRE. AR TEAHEINERTREER R
&, FABEFBATUARNREEAFINFHE EHLE, 555
ERHUTHEBETFBARN, ESBETFBATRBELEWEIELHEL
MEIEE SRR, RET BB ML E. R. Asahi &AW
B T YRR 5 ETE TiO, FBEN TRIOTR, HIEEM TiOLN, R
FAKFIL 500nm, FAEAM RN TRBEFEE., ZEULFKHE=FTEHHIRA
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BT R AIPERE . Kasahara & AMIRR T H54k5 BB E LY LaTiON HIEAL
2iEME, RIWEHTERERSN 2.1eV, BE¥MAL 600nm LA TFHIAT . Colon %
AR S B¢ TiO,, 7 TiO, 4%, S EFHUL O BT Ti-S BAILMER
TiO, KR I BR AL 5, WS AT W56 . Jinshu Wang 2 AU FI NI AL 2753 STiOs
5 SiF, B LiF ¥ RBREABARTE, BANBAURRERELEET
405~411nm, BIEETFIRTIR|T 3.02~3.06eV. 4iHIAKBRIBHIRET A 3.18eV, TR
J1E 390nm £4. Li IF MRABREREEBAFREL, BHESRABFHE
REBEFL. FIRAKH, RBRERT MM NO 8T, {8 Li M3t ARK
THAEENE. Bt SITos-LiF, BREH| &8 Li, F 38 SITio; B EHET
StTiO;-StF, BREE A BIM F B¢ SrTiOs. BERTER RAERTELS-T LR
5T FIRR B S A BUR SRR T 34 B L A B RREE R P25 BB MDA
£

132 XA HBES: WEBTFHITHIZEZ

FRAAEAMENE SR LR —HERATE. 7
BAEUMEOESTURFEEMATFRED S, FRENFIERIERENTEE,
MR E AR B 72 . BA—REU RN A RHEEBRAR LA
MELET R EALEE, RFRSRERAEHITES, LR EK
RELLIHLE . P25 BENAX LI, Bk Degussa P25 i 80 %HIBIELT"
20 %& AR SEEHMR, XPESLAMEERN 3.0eV BT h 3.2¢V, XM
AAEBRHEISE TO, MEHBILEHEES.,

Gopid % APUFI R TiO, M1 CdS AR E R &, HI% T CdS-TIO, R &4 %,
BEH RREBRRE CdS Bk 5 Tio, BhL 2 [RiEid REHEE—E. CdS MR
2.5¢V BT TiO, 9 3.2eV, HALKF LUME CdS M B FRAERE, BEARLE
BR Tio M Fot, BT CdS M4t Be AL B TIO, E S, NEHRTRR
£ CdS ¥## 3| TiO, MZ R CdS $4, BF7 CdS # Tio, Z [HHI# B
AL AR TREARRENE, REEFNELETE. Pal ZALIFRA
BRI, SRR ARE & T Fe B 1~10wt%H] Fe,05/TiO, #1 =T
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HEEMY. FERRES L SHET AR BER TREOLE, KBELS
HERESRERE UK Fe S BABKIIKR.

Takeo Arai Z APIR R BmBEELEEFIE T CuBiOs KK, HATENTF
BUH CuBi,Os A5 WO, Sk AR &, IR AR ZEREES. 4RIEH,
SEMERRT B4 WO B gLE S BRERT LA ANRA, A5
FEFHEMBAL TR PHRPEEN WO, x<3), MERBEHFE. EEYWETTK
Al AL ISP . Takeo Arai A, IEREN CuBiO4 HIFFEE, HRKITEIA
WBSH LT RNMBEEBE, BT ILBHNER.

Xingping Lin 25 AP§ FIERBE P4 1 575 %1% T Bi,05-BaTiO R A4 AL
L RN R LR AR RRE L, XA Rt R IR AT
PARZ A RRERGBENBRTFERIBENNRE. XPRETRIFFRES
B RS E N B, AR REBE TGN B EALRRNR
FRIAFBNTEARZELEREFNEEER, BAEBNIRRSESEH.

Mingce Long % APV Rl i1 & T Cos04/BiVO, F 4 F SEMEALT,
AT HARBRERMMEE N . BB RE—FHIEEEERE L5y, i BEKHET
o3 AR B ZEHE LRI B, SEBRAFRA, R4S 4 M LL B R R KR & YU R RE AR RE h
EE T2, ETLETEANMT ARG ER MR, T Tio, £ AKX
TFRIEEREE RN EERETEMPL X KR MHUEHRT THR, A
Co304 1 BiVO, MBS AL B FAUCAE ELEE W KD UGS AT AR, B-&LUEHAR
MEME IR, BFERNEBEEIMR, Bl AR BARYRE R
HEES .

133 (BREM: RERFHRBEN

1980 4, Sato % APSE TiO, L5138 Pt SRR, RBLZE X BEFHmME
&RE, REATELHZ T, ¥ IFAERANEBREMN, BTFNRKERE
B n-E RREBR TR KEABRENER, BRCNNFRKELAR, NTER
W4 2L 5 (schottky barrier). iF B B 45332 B IRIOE A B FHE KR
B, REBRTFHEERLE, NIHHETHEFNZRNES, =6 T ELEE.
FuX.Z AP &8, REPRHAE, Tio, KILBILEHEAKERR, XNENE



% % it

WEAT LR ERKNRE, FSALECTENE FRERLSRENFAE
B3 B E MK E; o, Rufus B. LEPIRIMY Pd I TF CdS B, @/ T CdS
R, FEE CdS MBI KTEEY B2 S17nm. B&EARMBHESRER
VI P, B4k Pd, Ag, Au B Ru SR % R B S EOY), xeHs
BRI RIRE T LS ERLELEN, BFKHME. FIYNELUARE
ERHERE,

134 MARHERBFX: REESWARUMHIEBTRBED

T EEWEREMEL RETFEMAR ML FEOCELIET KD,
LRHESYAREER AN, BTERMEZRAERERE. M RERTE
FEHH PR RER, FIAESIATRLERBTN, W Fe/Fe )
AN, HARPSIANELEFE R TG, TUEEMMAETFHEBEIN
B, EERFRELHER.

1.4 AR

MEAERT R DERR. % EREM RV FEFES RF T
Al ANARTR R ASPELRARBKH S EARBE G RIRA
T

1.4.1 KB AL TR

M 1972 & , AXFRRKEH Fujishima &R n-TiO, AR L AL RRK
PSR TG, AITER A SR AT RAKRIERT T KEMHR. K5
ARNBEREREXN THRABHERENAERDEEFRIREXL: HE™Y
H, REBMAMNIRMEGSRFZELE, M TFRAMKEZUNEGEFTER
B ATLURIK CO, TR AR, WUAMBORESK: REXL, o
PAMARAE LR REEIR I R 5 TIKRENEME, ¥FENETEEEL KR
BRECGERME 1.23eV)K, HRWELHAKERDNBAESNNFEL=ER
MIEAT . Bl XREEMR A EUMEIFAE, &30 £X, NEY]
RILH TiO, SrTiOsNE] K NbsO,7®, KNb;Og!®, InNbO4 %, St fg 4k #H R g9 B 51
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R X¥WE¥MRX

RERE, —HFROF AN AP BB RE. B2, KRB
A EIERAR, JeHE bR B & A 7 e i B PR T LK Tk A, K3
FIRHBKEUF LT RRHN R, HEEARKRARERENLRER
%, MTBEFEBAN—LHFER, REXBKOFHARREE. BREEA
A% F AT B R ERS ERBARMK, FHHFILE R
F AR 2 R E BT T R I E B AL BB B

1.4.2 IS HGAB PR XML R

BE% 21 L TR, HREELRMEEREAHE. TWREK
BEA P HIR A LSRR A R R FRER™EMTES . flw, BEX
PRl REV A REE P —REBLE . EREFEPERLLRLEBREIRK
BIEEMBUEY RS, ¥ANEDLEES FREE R EREEBERK,
BT AR B 2 S AL R AR B R K B R AMTTHIR R DGR . RS S HiiE B ]
PABEG LR AR, R Rk AR B AR LR B KEE T HR#H
FB. HuZ"% [ TiOy/Siop MMM, LA EELEREET T ELHN
. SRERRE, LROCELRENLEEEENRBHRBERARX,
B F RIS 2 BEER &SN TN AR R TR R RE K.

AR LB R KL, R AR B 28 b 2 R BT
S LB ., B A 0 B B R SRR AL L AL A RHEHE « Qaradawi B AUV TiO,
K F AL PR E R PR LR RS T R R BT R PR, FFOTAR T AELTIR
B pH. BEBKEZAEMN TO, BHMEW. Wang ZUVIF A FEE
) e 1 Ak PR B SR R AL QK RL ZnO/SnO;, R EAL T

Houas % APV TiO, AW, Xt 5kl T R REHAT T AL REERER.
WRERR\ABURNATUSFEFEERBERERLRE, RNEBEERTH
TR EE T L 72 2R COy, NH,', NOsHI SOS S XN F. @il 1sll o547
FENR NI BRI PR, (8 R PREBRFOCEL R T KR n
SFHEXRMEGTF, FENFREYSHE R R FARET R HEM.

HETX T &R AR RKEE KRR EEILE T B ITARE, el
SUBEEI—FHHHKEEFERBARLFEE —EARMZAL, EHTENREH
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T8 % it

L

REREXES, TURREFRROFENENT R SRR — X R
RE R IFRALER AN, e RIS, ERFERTE. MREREN
XL B EERNEX.

1.5 §KEbEE, MR I HEARIRE R

TiO, RE B ¥ AMMN A F el , RES N I B RAEAT R IILE LA
o BS%E Ti0,, —RINBR. EEEHARRERE. B TIO, FiENKE
s R THAENNES.

RSB EARMARE KR TEKY &/ SN EHERN LRk E—
MRART Y—EET (CaTiO), ERTHEL T4, ZHRTRTEXER.
ARGHEEREL T RR, BTURBNY MEFELXARTIS &R RER
THER R LA GEHNSRT BUSYR I BENESKY RSN, MiEHEBER
FSL T B4R SR A EERT 4.

Tongguang Xu 2 A" FJ Ba(OH), M1 Ta,05 7K #i 1l & T 7377 #1# BaTa;06
afk, SEEHE BaTiOs FIE—HF, K#H &L ERER-F5RBNE. XK
PG RS E W T YR SRR S, TSR IGATI R M E T R ELrX
£, ZRiEH 270°CTF 72h KA E ) BaTa,06 99K#E, SRIER/D, HEHNE
. ERGEE T IR SR AR R L AL AR

Dong Won Hwang %V BeRERZ: 414 T Cr* 1 Fe™ B4 LayTio07. 8
R84 St B R BT & B Cr-La, TiO7 Fl Fe-La,Ti O fIHET 43 54 2.2¢V 1 2.6eV.
B2 LayTi, 07 EAUK P KEIE R GE S, RFEAKFMA CH;0H 54 &%
ST WL T REHIARE S . BEBRREREMEETHRD, SHEAFLELN
B, XRENERALRABFEREEP 0, | T HEHZRMEROEBR.

Kayzad J. Vajifdar SR T TiO, & & BaTiO; ABEMAN AN BR. £
#4 BaTiO; H&H TIO, MMBEXF LARMBRS, REHILSELSHI
REEBRERAREENSEAERER. PR RI BaTiOs HIMAST R H
BHEHB, 8 BaTiO; £ &~ E A LM — AL, AR Tio, M
RSCHTER: B—AE, o7 CUE IR MM — 84 o] AL kiR
FIMeREMYCIRAE . EiiXET T ERER W LA RUIRE TiO, ML,
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WRXPHBEFMRX

S —

Junhua LuoM# I K #E& M T StTiO; L7 Fe,05 (BiFeO;) HFk4H. &
R BRE &Y 380~600nm KIEMRBERT SITiO; B T B KEF . {£H BiFeO;
1 Fe O3 1E A AR FHIR R FZREB M, £18FRER RABEBRIFRENIE
L SITiOs ML T MK EIERE S . fEH IR, SITiO; HIERALEAER KB
ERTFHFRNEELEWFHES B BKREMNRE, BT BRI
A1

Hiroshi Irie Z™IBF 5T T Ag #1 Pb™ B T #5243t F SITiO; SR LR RE S
W, FEIYETERSEREERRT BN TR NEN. fEEERK
BRI RTE 1100C T H1& T Po™H Ag' B 2 MISkREE AR R . 35 2 KRR
BB TRRALIICET LAk — L, (B0] WS T B R AR
MTRMER BT HE. EENTREWEWHTT O, A8 PPETE
6s HiES 02p SLER A SHBEMEAR, W Ag+NRETH 4d SLETE 02p 1
B LR T FHaed, NTTEBRETRE, £ THREEARR _AREAIRE
71

Defa Wang % A"V Fl Bl AR e 45 i 41 % T 2% Cr' i SITiOs, AR T ok
BAKEIEREE . EENT COBTFHBALERTTHA, RETE Meijie
S NPIREMWA. WEAD Cr BARR TV E, HE 408, mEEA
% Cr BAET SITO; ARG E, BUE SP N CF, & TiVMAIEHIT
CP A O R &, BT TEBRER. BARET SITIO; 7 380~620nm
FKEEBRE, FRTHRER Pt ZEHAETLAKBRE AT R KEISHEE
fie

Teruhisa Ohno &' i@ i AR MK E R AV T EHIET S, CEBH
MR, BT S M C BT SITiO; #I8 R 4T ERBUL KA EM 400nm B3|
700nm. {E&FRRE_ARSAENRERRT &R RKebELEE, RRE
350nm PA R KAEHBHT, BROKRERE T RETENKREOMEILE
. EHEAAHEELEIMRERET S M C BFHBRATIEMRIK
A B ER .
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F-E 4R

1.6 ANXFETHEBRNAR

EXFEARARBINHBKRER & 5B&. ERE SRR MR 5
Bl &, FLOERBENERARES R, FiITBRUARN. BRI
R EELTERE. '

KERPIMBETHE A 330V, HOLRKTEREREINER, FIUETLATRE
EALEE S, BEBRTUTERHFRFP AR TAER, SRR G MR
FiEBES, AMREET LAk ELEES.

Sesh, B A—F KB E, HBMERTRSEREDLERTE RS E.
Jennifer L ZUOF| BB F 1 21945 (AFM) MH4E4MEHS T Ag'H Pb* 7E BaTiO;
MAREMTIIIT BT THR. LREN, 7EXET Ag'H Po* HIE T A
MIVIARALE, fEEANARHELM LIS BaTios RERILKENRET XK. X
ARFERNETBIREF 2B ROKMHHERTEAARE, R T FRH
FERBEYR . WBRUEBEREHRL, KRAXFERBOAERTETN B
B R | |

MESHRBRE—F, HBETHE, TEEHERK. KALK, fRi—
B#ZREMBATOM A, mAREMFEREMEREN (SBN) R4AEFE
SHRFEFEEZANA. X RREAELENNHAEET — R, |/
RELFIEE & KBEREARE, FORESSItE, KLRERD. HAREEN
FHEERERNERE, M THRAARSEREAHAEREEFEENELE
X

PR KRR EL A R K HIFEME . TiOs A1 NbOg /\ T 1453 BIETH A FE B SR AR 3
MR, BT S HNKRENESERE NN RREESH ERXRRLER
HET/\HAZ BIRE 5 B AREEE PR E W A4 . 0 B Nb 1 Ti B3
B RER A RS, REBBUKR. X— AT S8 Defa Wang™4% A H5F
RAEE. Hit, WBEKREENCEAMRARIR .

FIRt, & KLREAEL & E SRR TR LR XK
E, AEREUENTERMEX. SN SEREMNAELHRNEE
TR R i [ A R R, ﬁﬁ&ﬁ&éﬁﬁk\ﬁﬁ*ﬂékﬂﬁ*ﬁ A5 BE A,
R K BRIBES RS B VAT LAEBR B E T & H/NBRL. B4
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xR XKFHEFEHMLX

A, HRERK BB KA SN AK R mEREHENG&SRE,

RECRALR N RMAERLRAE T LA BRI RE I ANER.
AXMEEARLWT:

1) ZRRKRAMBKAFTEH SRR, FZRBARET. B0 HEE

FRAE, RSB THETRAELRE SRR RYE,

(2) FRKRREEE S E R R RAREAKIM R . BT EHRIETFR, B

FEAN IR R . 44 3 T Je SRR #h A REAL BE ) RO W o
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BT TRNRETE

BIW XRABEHE

2.1 XBEHSNH

2.1.1 XBHR
SRFAFEREAGTITER2-1 B, FEELREFRISRE—SA1L,

% 2-1 LRPYRHAH

Table 2-1 Reagents used in the experiments

¥R SFE alifg
SRR T B Ci6H3604Ti 340.35 SrfTek
SEH NaOH 40.00 ek
AN Ba(OH),'8H,0 315.48 S
FEMN = Nb,Os 265.82 Sr¥frat

Y, HF 20.01 40%
0E. NH,NO; 80.04 SHra
M C¢Hs07H,0 210.14 SHifret
B Na,SO0, 142.04 PiRiEa
THER C16H24CIN;0;8 373.90 vRiiE]
Rl a2 Zn(NO;)6H,0 297.38 L
32l 453 Mg(NO3),'6H,0 256.41 ZiLiE
THRR Ni(NOs),-6H,0 290.81 43 bl
W Co(NO3),"6H,0 290.04 sS4
& Fe(NO;);9H,0 404.02 v L
THRR La (NOs),6H,0 433.00 kit
W Ce(NO3);6H,0 434.25 Vi
MR Nd(NO;)s-5H,0 330.25 ¥t

EHFK H,0 18.00 EHFK

17



R KF@M+¥HERX

—

2.1.2 XREGHRSHH

SCHP B A I B S R AR AR 2851 Tk 22 P

R 22 KRPBRONFRE

Table 2-2 The equipments used in the experiments

&L e AR

b=tk ke $22-2 LR R

RS 85-2 LH & EBLR ST

EipiAec kb $X2-4-10 FEEAATHRAR

R R TRE 101-3AB RETRIHFURER LA

Vb b KQ-250B BUTTEAENETHRAR

HFRERKF BX420H S 30 3

PRBK AP WX-800 Lz B E AR

T PLS-SXE300, 300W JE3T Trusttech B3 F R A F

X m‘ézmﬁﬂx AXS D8 #5 & Bruker 22 7

B BT BB H-600 HEHMY2AH]

HRFARETEME JSM 6700-F BA®EF (JEOL) 2AF
NEXUS 670

837 AR IR Sh- 1 B AR % & Thermo Nicolet 2]

Thermal NXR Raman Module

2.2 HEMNRRRIE

2.2.1 X BT (XRD) 447

X SEMHRARBANARST ZH—TEAR. ERAH X HEEhk.
AR RIS B, #ATHRBEEMNE R DT ST B M7
HHEAR. 2 X HEFAREAEN, SERENTRESN X HE, HPR
B &I JTE 2dsin6=n) 77 EA BEFAEATH . BREHETECHANR
K& G5 H, RTGT B0 AR FE ISR BE & AR IR, RERBGERHE a8 R A AT 4T B9 A BERISR AL,
L0 X HEREE, 44 X HEKRE JICPDS « f, BIRI#TYHNSHIT.
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BB LRNNTE

A28 {8 1 2 [ Bruker AXS D8 & X St #741{X (Bruker AXS D8 advance
powder diffractometer) X & HI 0K AT RATH SAHST, WRAKMFH: #
# (Ka, CuKa=0.15418); T{Ef 4 40kV, Eifih 100mA; 337G HE R 10~80°,

222 EMEE (TEM) 247

BHETFEMFERUB KRG B FRIEBIR, HalERRERBRI—
MEFRDIHAT, BRAFERNBEFRENS. MXHOFREXRBEREREJL
+49K), LMEERFRELHES.

A3 R A H A& H LA A # H-600 B35 53 i F 8 5% (Transmission electron
microscopy, TEM) MEBR R~F M RBEZE, BEMELERN 200kV. HEHR
BER, ERRARE S MBELED, BERY 5 48, REETHM E#TRE.
HaEZRTHR.

223 FEM AL BEE (FESEM) 447

FLRKABEHEF (JEOL) 27 ISM 6700-F BA B RHAHBF B MR
(Field emission scanning electron microscopy, FESEM) & MR . KA M
HEAREN 15.0kV. HITIERENF HRZ R E KRBT R REHTE
, FRAEFRECRREFEN KRB FHEBS BT, BetaREmaEmn
FERR .

2.2.4 B @ X% (Raman spectra) 947

7 925 5K A % [ Thermo Nicolet 24 &) 7= NEXUS 670 B& 7 vt R S5h-11 8
FENH TR BAEIT. BREH: FHETEER 1000~200 cm™, FHHER 0.5
cm”, FHKERE: 0.01em’, HIKRE: 75 KA.

fr @ ERAER 1064 nm MBOETE AR, BARERE 2W, KAKLETE
B4 4000~3500cm™, RTLAXTEE CByEK. #8) Wik, SERESETRRM
.
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WEK2Bm ¥R
225 SRXREHMBREERIBERIH

AL RH R W7502 BIESMAT LA e BE TSk MR R R W AR O
B. $¥ Inm, F#EHE 200~800nm, KAA KM EEEFKEVFE.

5 i UV2550 4 60 EE AL & AR BRIC AR B B AR A998 R 8%, 1338
¥ [ 200-800nm.

23 R RE

A XH T REOLELRARE IR LR B WA 2-1 B, KA
HEHAERA TR S00W BETUTHANE, BEENEI-TRERMEE,
A 400nm W HE, ATRERMEER. W FREMEDFBERELR
% 4%} IF BB 85 (methylene blue, 4850 MB)II/KEH I k. XMTEREER
HENEAM MR R —. TRERWT: 4 100mg EUFIMAZIES
20mg/L BT HE KB BB R N8 (BERY 30cm’, & Sem), BT R
B TR M T8, REHERET 300W FUTES T, FAMHE. EH
S ST 040 S 6 B A 0 5 o B B T ) AR A 8, 20 I R R U VR BE A AR IR B L
18 C/C, bl B 2%, B BAELFILEILRES .

i I i i 400nm A

.........

- kN#

B B3R

P 2-1 S48 4 R A Y PR 2 B 2 s R

Fig. 2-1 Testing device for photodegradating methylene blue.
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2.4 BlERAE

2.4.1 WAk #HRE

KPEREREBAFREMEN. ThEE. HRME AL EIRFEMENE
ERENAEXRE. B 1982 FEAFREAT T E—BEFKRRNEEITE
LUk, EERTFAL, HIAEFRERIN TRERERMH T &BRNHLER
B EXET, ERESRHLEY, IFRFEMH.

FEARREHT, KEEFRB=E LB EOARE. BERED BTFRA
F RERE. MEEERE. EKRERT, BEHE D BEINE SR K B
K, XFE R & R B A A X A4 iR U R . IR RIS ER
HREMRERRX. ERAERIEY, BEMNZLMEKRZES KT,
JEHRAEARRZRARER IR MIGEARE. BENRETEERN.

BARKH BB FHE T LU & 4 SR AR RESNAK R, ERM
BB, MEASHE. Ml TRKEEEREBREREN EAESTmE, Bk
KIBHBR T BAEE R W, 0T BEAEITIE A TE R B B R Bk, T3R8
RIBARE, BT R BRI A KRB L.

TR K B P B G In P e 7 X LB AR A UK 73 F BRI AR A 0 53 7 24
EFME, MRREYPEHERAE, R HsmHt. MEEKAFNRARES
7 A RMAAR L, SBUKE EHE 2T 2053 LR RS RIS K iz
B RURIEERIK 3 F RS, TN —EARER R NATRE A ERNER, A
TG B2 7 A4 7R o R 0 Ak 48R SR S B R P B R 5 R RIS 4R 7 P
EIGUKMRL 4 SR o TR i mT LAFE £ G5 K B I L 40 Z — BT B ]
P A EIR S BUE M 4 R B AR AT R

24.2 FIRBERRE

EEB L EEKAEERAERELER SR, TR REHE FHA. &
— AN REREE RN, SR AE BT R R R KBRS, DARER T R
R, BEJE RN HTR HRE LR, MR TR M. W BUREREE & R
MREFERA: SRIRE (TEARPIRIELR) EHEE (A RRd R
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S —

W R KF B EARX

HIE ) K RERREE T, BEKIERR, BREHENRA, Kb
EERH—FERERE, HAGRE, SEMMEEDR LR, B2 S KRER
B TFEaIRGS, M= ERBSHHBRREKERE, TERER, HIMER
RYIRR5EL, BRIREY. N TFRETE, BRIKERFEERT UTRS:
FIRGH B 5 MRE B A EMLE RN R AR, RERNEER, 77N
WHE B FEEIR: RPN AR EEERNHERHARER, FITREAE
A HREREPAARRE; WARH, RERIEHIELERTE,
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T8 REIRRE MO H % RIDLAEL

F=E SRANESRUBRUNTERALEL

31 35l8

KRN (BaTiOs) A4S B4H, WA 3-1 fin. BRAKIPHETF Ba G832
R\, BANAET T ST RKEG, £EF O™ HMETEL,
RAZHCH 6, A TiOs \HE. ENEFELTA LHEETFERR =B,
BKH Ba BFHAEE/\ANE/N\EHERMN - ZEETRS, RAEH 12,

AT EHELEMETURT N ABO; R, Hd A RRZHMHEET,
i Ba™, Pb*' M1 Ca™*; BREREUMBEETF, W Ti*, Z""%, &L BOs \
HHERMIEREH. RIENBRLEETRNAR XA S AERT . BER
FIERERT 451, XFpl BOs N\EARARMMEIHISHIEEH T U HTERLAZR
ERGEE:

P r,+1r,
N2z, +1,)

K ra, g M ro S HIIEX T RINE F ¥ 2. BREF t7£0.79 F1 1.1 Z A
EHERT B TS 454 . SRR FZEF t (BaTiO;) =0.93, A EARGE
B4,

& 3-1 S45 BaTiO; £HK

Fig. 3-1 Structure diagrams of perovskite BaTiO;.
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i R OK ¥ k¥ AR X

BaTiO; ZEAFIRE T A LM ERAM, Hh=fREMAF %t HEH
ZRAREFENBECEN:

SRR IR RS R R e U R R e AT R R
:

KRR A SR, XERBREMPTREN. BT KET Ba LKA T
BUNETF O FEECHEREH, BANEOET Ti AT LEMARE R S 4
HE TSGR BEZIRENERN, TiRFRERCE, F=E%ut.

B 3-2 4 BaTiO; 55 TiO, (8i4kH™) M4ixt R B, BaTiOs BRAMLBER &
KW TRROEZM, EHAFEERR, TELRBBRERIIEHER,
ST R RR D BABEEEK, FRTFAERFRESRAEEE, FURE
FAENTRASCEAMEEH. FESHLHTBRASRELE, RKAETH MY
o, REtELEEs.

a0l
TiO; BaTiO»
00 1 __ e A A e Ha
; 5 P
10 3.2 ‘3.3
= : ———————— o’
__________
-2 : o ¥
20 | :
:
3ol
——

# 3-2 BaTiO; 1 TiO, Bt 4k fr &

Fig. 3-2 Absolute energy positions diagram of BaTiOs; and TiO,.

3.2 SRMMNEKAERER AL

A4 ¥ B RMBEOKREH SR RER BaTiOs &1k, HHITHIEAE BaTi
BE/RH. NaOH RES £ XY RES RUENEN. EEFARBKNESE %
BaTiOs HIMERY . 5/ i 5o e R I PP 11 S0 o L S Sb- AT LB A AT IOt B
TFRIEREALAE T 5 BIHEAT RAE
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FE RRIUREB RIS & R Lk

3.2.1 XREH

BaTiO; #I& B H 5B, FE LA ARAH &7 ER T RAMHR. £+
fE TP LB R AR, 5EAREA LR TS BT Ti K3 KM BaCO;
FEMRAN, SEEKBEHLETFRB ARG E, REHEESR, RAEER

SR R IR 7K AT 1 % SRR BN K S W1 R b AL B A B Ba(OH), K2 T s
(C16H3604Ti, Tetrabutyt titanate, TBT), &7 EWME 3-3 Fix:

TBT
BHAR
mA
NaOH # | DPXOHR A :
# Imol. |— [ 180C, 1h [T—e—, ﬁg(“‘“)’
Fi#
HE, 57 | — | ftm: /

800°C, 1h

A 3-3 /K #ES K BaTio; R M FEE

Fig. 3-3 Reaction scheme of BaTiO; synthesized by microwave assisted hydrothermal method.

B T B N E) NaOH ¥ T AT KME, KRG RKEF=YPIALE LB
Eb# Ba(OH),, FH R EMHEB R B K AZE S, 75 180C FHRBKKBRL 1 /MES;
REEAEZETKEEFY, EREHBEFH 3%wiNaSO, FH R AR I A
IE. BNKEFE 85°CTF /G, 800CLALIBK 1h, BUNBIEERE.

KA E Bruker AXS D8 & X & AT4H OO0 Hl & M40 K & ATH K74 A AH
S4r. ERRAAHIYAF H-600 RBHETFEMBAHBTEHBERNE SR N
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KXW+ AR

$5. £% E Thermo Nicolet A 77 NEXUS 670 837 135 Hr 5h-30 8 it {0t
BT, AR BRI 405 — B

322 BR5We

B RE. KERIBRFKPE—H R U R RENIFTA DT i
HAEAME . EREERENEZREREMRMER. RMAE. 57REae
FE/REC. NaOH BIMMAESE . AXHHA T ARIFIPELEE/REL. NaOH WX T R MY
FOEMAEGREREREN. FRNEERE IR R LS NaOH KK .

M. M. Lencka #1 R.E.Riman'® /i # )y ¥BF 5L %W, Ba/Ti B/R LR AKHE R
| MOMEEEZREEZ —. TEM TiBa/Ti< DSFYH R E 3% Tio, Sk,
BEZM, E—HARUCEEEKREANELY EHITTRIE. EEKN Ba/Ti
tb (Ba/Ti> 1)FEMS N A pH {8, {23 BaTiO; MBI MIAER, WD KM Ba itk
Frg =9+ Ba/Ti JEEHBIIRR, BIRDBRMEMER, RIESMHAE.

B 3-4 34 180°CF, {3 AR AE /R EL i i T A A T ipl /K A8 B B IR R 7=
YR X HEATH B . KA EX 1h, B7XAEBAEH K NaOH KA 1mol/L.
B 34 7750, AFK Ba/Ti BE/RILETR BIAMRIN S R RRE, (BEPKEE 1
2 ZEAREE, X SETHEETFERESERREARETENE, RIEHSE
AR R BRKNR A T 2R, BERTSR ARk i, PR
TR T AR EEMBES, REHNAXDEEMERD, FEINKERLA 1.6
M@ REERRK. SARTEXENTETHOER, BHEIEFRDHkE
IREEA 1.6 ABAEI %K) BaTiO; %14

BENG, STEEFTF BaTiO; B4R 18 Urek %A% Ba(OH), it & £
X O A B A R i ) 82 SR R, 3% 2 B Ayt B A Ba(OH), ZEK #1 R it A2 e R Bl CO,
IR, SBOERIAE TR, B0 %% Ba/Ti KIBE/REL. Reza
B %t FIU A BaTiOs &6, BAESUKAEREN 16, BREZEONTINE
LT A
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1500
le ratio: Ba/Ti= 2.0
A D U T S e e
R W U W W \ A BaTE18 |
%1000‘ BTt 6
& =1.
§ A JL A 1 A L A - i
£
Ba/Ti=1.4
500"
BaTi=1.2
LA L 1 ‘L A L A A A
Ba/Ti=1.0
A MJL ‘A_l I“‘A‘ TA'I L] IATT L IJ}_ L] IA‘I Itfj
20 30 40 60 70 80

50
2-Theta(")

B 34 N[F Ba/Ti HLATIR (48] &4 BaTiOs 8 X ST A4 Bl ik

Fig. 3-4 XRD patterns of BaTiOj; synthesized from former bodies with different Ba/Ti mole ratios.

W) pH (BB 2 WA Ak BaTiO; B ) EE A FK . Lencka M. M.Hl Riman R.
E ., XKHA R BaTiO; BRE#TER A, BT RNEHAE pH 5 Ba™ B
FREXTERK BaTio; MW E . 45 REHY, BaTiO; R E MR E P& .
Ba(OH), 757K 5 i) 75 % F5 Bt A 48 B2 R0 P ) 9 384 I a3 A, (B B LASR L 2 %
Fif) pH ELAE AR I &, BT ZEMA NaOH RIEEHM pH H. KK
T, OHHIfFERL(RH BaTiOs SRR K. ¥iah NI & BREMIARER
#ATIH N, FEinA NaOH BE(28 105 H R R,

Bl 3-5 ARTIKAPEREL A 1.6 B, B X4 # P A~ [ NaOH ¥R 5 73 219 BaTiO;
B X SHEATat . KA NaOH B =Y 48460 1) TiO, B4 B RE, HNE
KRG FE 4 Ba 3k 5EKM T BERIK =Y R £ R ¥, Ba(OH), 7EZ JEKETLHFP
wWikH, #=Ph TiO,. EXMEMRT, RE Ba(OH), I8, HRGHKERTEK
EFYIR R, B NaOH I RULAT DH). BEAE NaOH B3, =Y &
HEHEZE, X5 Dutta FIAFIKEEREMER FRAKKHERHFL—B, &
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SCAH OHHIEMAF T Ba' My #, SBEHEANE, BMBKABENRN
WEARMERA SR AN EK. XEWHABERMIEBAR B SR KEE R
RREAL, mEZANE, SMERENSEK, BRNENX/PIRIMIESS
ARKKEEK. BRFSHREFRENS, GRAFHYRERD, RIEXRD A
i oh BN B AR I N, A (EFT 78 NaOH SRR K, AILEHF NaOH iR
&4 1mol/L.

B 3-6 JFEYIEKRRINTE 45°K7 5T ALK X STERATH EE. 45075 AL XUE
BB b R X HI U5 MR AR KR . LR &M &GP B IR
ik, R 45MT5T AL IS B S, Bkl &) BaTiO; 3L H.

125 m NaOH= OmollL

J NaOH= 3mollL

LL A._}L AN SR N

! NaOH= 2mollL
“A_J{ A A A

257 NaOH= 1mol/L

751 Al

Intensity (a.u.)

o= 1 1

50
2-Theta(®)

B 3-5 77 NaOH ¥R [ 5 & AU SRR X ST i 5t 1%

Fig. 3-5 X RD patterns of BaTiQ; synthesized with different concentrations of NaOH.
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3 30.0 2 data

————3-725 Barium Titanium Oxide

| U 1 1 | | |
42.00 43.00 44.00 45.00 46.00 47.00 48.00

, 2-Theta(degree)
B 3-6 AT 44 Ba/Ti BE/R L 1.6, NaOH WL 1mol/L %% K BaTiO,
£ 45°ATH AL X S AT 4T B
Fig. 3-6 XRD patterns of BaTiO; synthesized at Ba/Ti mole ratio 1.6,

concentration of NaOH 1mol/L. when 2theta=45°.

Yukiya Hakuta®0$2H T RRBMA. A1, B TFFREERN/DRER
SIS ERR, FEMTAENESRTHE. Ying Ma % AP0 5 ARSI #
K REFE T 4K BaTiOs, #HATHBAN A BB KBEF &K c/a (c, a
HERSE) HHEEKRZEER, DARNGHE, WLHTEKARMES OH
KAGERFIBEHETRERN, Ying Ma B ARX A A &I G H
(pseudo-tetragonal); BN 1E & LA RIS T LA AR U A ML E, WA
itk R BaTiO; &AM MR TR . FARAPIFRT BaTiOs MHAET ML
BIY S AT M SEa R B 8k, N AEEE TENE 8 530548 BaTiOs f114.
ERBEETHAEE, BEAKEKRAE, B FaERNNTHE. X
& Raman £ EIRY, 49K BaTios MSHEERFNFE, BANHBEEEHRS,
BANERUSFHEE. ARBFRIEAE T LM AR 2%
#, AE3-1,
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& 3-1 BaTiO; K3 8 e i B iR AE o 2 46 P4

Table 3-1 Raman spectra of BaTiO; at different temperatures

T XRD(structure) v, va V3 Vs Vs Vs vo(em™)
150 'C Cubic
400 C Cubic 183 525 722 805 1060
500 C Cubic 187 523 723 805 1060
600 C Cubic 189 303 517 721 805 1060
700 'C Cubic 191 248 305 517 719
800 C Cubic 252 307 519 715
1000 °C Tetragonal 252 307 519 715
1200 C Tetragonal 252 306 519 719
1300 C Tetragonal 242 307 515 718

B 3-7a A FIHNEK L BT SR 4478 UK BaTiOs 11 86 B K3E & F AR
BB AN A o] AR B AR E B AE 4G, BN B R E T Rk ha s
XA IEE BEE . X RSP EIRMR 3-1 K, ASCERRBK RS BRI
BASEBETTESEES 600 CHRAEKHKMINKT ELiERL. B 3-7b AFF
NaOH ¥ B I 4R A3 18 B KRR UV A RO hr 8 L1 B, TR 4 R 5N A &L
FARRIARAERL 8 6 AR, {8 1060nm 4LiEF0 802nm AbHEIRAE/RSS, W T MU
FHARAFIE. MUERE, BEUKAEXN TEBERS, KRABRARSE. BRHK
KABBMKRIHFARKENNT A, FE#—PHREEA BER AT H.

BEF ERT, HMBUKAERIEH BaTios HRNUAGHE, SEPEEKE OH
FEER, LN ERRERNYENLEER. Bk, NPT
— AL, LIHRR OH, scBURIUTHZIDI T HfHE. B 3-8 AR FRE T #
AL E {9 BaTiOs ¥4 H) X HEATH E . 850°CT AL Sh FIME, 7F 45075 f
KRS BHIHLE ; R R ASCER LG, 45°HT5 AL AT IR . T 1000°C
WHATHEEHETHENEN B, XY BaTiO; CLxELHEZ AN HM. EH#
LEAEF, RENSETEFRFE BRARKNE, HAT B2,
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a)

Raman intensity

b)
i3 18&.2 -—304.3 ——NaOH 1moliL
516.6 —————— NaOH 2moliL
NaOH 3moliL

10

1000 1500 2000
Raman shift(cm-1)

T T
0 500

& 3-7 BaTiO; AL 8 X% a) AR Ba/Ti LRTERA S K: b) AR NaOH REA R
Fig. 3-7 Raman spectra of BaTiO; synthesized from former body with
a) different Ba/Ti mole ratios; b) different NaOH constrations.
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150
1000°C 5h
—~ I—J haodsiaal 'IL‘" -Jt‘ L;M‘
]
S 1007
z 900°C 5h
c
L
£
507
850C 5h
o-
20 30 40 50 60 70 80

2-Theta(®)

3-8 ZKHMIEHI% BaTiO; MZE R FIALER AL T #) X SHEAT 5 BiE

Fig. 3-8 XRD patterns of BaTiO; annealed under different heat treatment tempretures.

B 3-9 4K S KRG R A2 1000C, Sh #CTREE S ST
B. BaTiO; EHEHIHHR, RN EREYS, HE2—KE 100~200nm
Z 0. WMBKHMEKEERK, FUEBEEE TRABIRANE T HUEX,
HMxHEG Tk, XM R NRET S, YRR /NTRR RS,

AU A BaTiO; M AR A LAY KL ML FF B TR VA o ) PR AR A B SR 4 B HLOB 1AL
BEh. BENREMRAE, RHBRAREESREEREEXR. FRACETENTE
R B ERFES(L 654nm Ab)ARIEMZAR L, FEaldEENFDEELTIN
fEH1. B 3-10 4 BaTiO; M T FEERERMME. BT EE TR AEF
FIEEAN-TT WIS T8 B MRtk o RIC RS T A BaTiOs i FEAR ih 2k F1 %
Hh-T] WIAEER S T I BaTios MM & . EHMERR T2 REZERLELR
HRMEHE, REERBEIYNOAERLEE. YFEERKEE 500~750nm
BB, TERNOLRES AT A RH TR ERRERER. EREFEENBRER
ZBRIERIR, BaTiO; TEESETRAT, 3h WK T FRIEMEM 40%EH; WEATRL
KEHT, (XPEME 10%4LE. BaTiO; BEEH R4, HEEWAN 33¢V, X



B=F RRUURRS KR )% R AEL

OO TR AT MNBIE R D, FrLR B AZER AT Mok T A8,
MEEER RATRBBERTIE Y. BERENIHETHRELE, REtE
LRES .

F 3-9 BaTiO; MBS SIS
Fig. 3-9 TEM morphologies of BaTiOs.

1.0 4 —a— UvVis
0'% 2 —e— \is
g —a—selfdes
0.8
0.7 4
0.6
: ]
O 05 4
o ]
0.4 -
0.3 4
0.2 4
0.1 4
0.0 - T v T T T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0

Time (h)
B4 3-10 BaTiO; REAR L 5 25 8 A S bl ok i 26 1k i 4

Fig. 3-10 MB degradation curve with BaTiO; being the photocatalyst.
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3.3 SRS R

BRARBEAEMEENEEFR. EREUMENRAS, REELET
MR AMNTEEEE N T ENHANE. A TEHULEHN, XE
FOLEAM B TR RRBENELENBRERLNTR, BRARANSRET
BEELBRETHERIBITNR. ERETFBRATRELIHREEPIINRKE
PERKELERE, NTTEHBRTF-ZRAMEE. SRETFBRIAAN BN R
FEREARMRTIBHARE, TREABETF-ZRAHEEP D,

BRE ETRREN S GBLEN, £5R RAELTW TiO, M Zn0 FH
REEHEMY, FHIERER, NRRETOFZEER D, BRAERSS]
AR RARG TR, TOREREUTE KRR, TBRRDEEICELESRY
B EHNER.

SRR TAEUT &1, TiOs \EABEI A LHEE FERR= M,
B KK Ba B FHEALE 8 M\ EBREBM T EAZET, BFRTLERARE
. UK TBRABTHEZRAEETR. FAE, SRV SHMKRE
FAAEREMNRREN RS TAEZRNBHEEX.

BRRTE ABO; HEANNARME, TUURERFHRBEREZRZE S
ITfEH: EREPHEE, EXRRENRRNNENRLERED. BRETE
wigl: BETFEE8EE, RRMIERBER. —KERT, 28K, 0E
BIRMEFEAN A G TERRAD MERBHEAB L. FTRYIFIETELS
AETFEBREKBRATHRARMLE. HRERPEFERTUTEH SR T
MAERZET. INTHTELBETER A TR B A, REXREXN, E58
ZRFEHR. —RETERED, BREHEANB L. EKER, FERA MM
RHFR. BKRERNZENAN B L.

A LHEFEB A 0.05 mol%~0.5 mol%¥K & Nb™ B F K2 BaTiOs KL L
Befi. —HE, NbOBEFHRT T E, R o B¥ES4, WLHRE BaTio;
MR T ERES: B—FHE Nb HBASESWEBERAMEL, BEEER
FRIKITHE, RELERTFEIHERS.
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3.3.1 XBHS

¥ NbOs ¥ R IA BB K ARTRAKF R P HTHR, BT Nb,Os ET K,
RNVARAEHAT . FEMARGEHEK Nb #1782 AIVEHR Nb fIHI & H AT
RS & RARI L, B TEBSITEYE Nb 25 2R, 430
K FE K RIE W P OB °T 5 1 Nb 80IR KR 75 23R #1745 2% . BaTiOs Kyl &5t
2 2.1 HpTR

HF REAEEH, T Nb TSR BRI R, RATRA T X 77 i,
BEAREEWT: ¥ Nb,Os 1 KOH B —EWHIRE, EhETE 400°C 4 3h,
A T I E B4 Nb,OsxKo0. HHIBEBAEENEETKE, BIBSIEN
Nb BB . |

Nb B-FHI#5 AR BaTiO; BB BUK AR N Z 8T, 7€ BaTiOs B AAHEHK
P Z P L LB N Nb,Os-xK,0 %, (ERTIE 4 Nb Rl Ti I ELBIFF-& B 20 Ho bl
RIEHITAKBER, HEPRE BaTiOs FKREFHI & HER.

14 J5 i) Nb:BaTiO; 14k, 7€ 800°C LA L#44b3E 5h, LLsPL Nb 7 BaTiO;
REPHRST . -

K Fi4%E Bruker AXS D8 B! X HI4kAT51{X (Bruker AXS D8 advance powder
diffractometer) Xt T & MIAK QAT ARATS A8 347, THERE 40kV, A Cu
$E(CuKa=0.15418) M4}, fF EOL JSM 6700F R E MR T RS IS

FENEE SR E—FTFR.

332 &ER511¢

B 3-11 2 Nb BIKE A 2% BaTiOsX 4144751 Bk . L E B K EH XRD
B SR, S%FEHNKRIAN TBAETFHERRIRSE, EBRKE
0.05mol%~0.5mol% B 4(F, BaTiOs BMALRAEBRKEN., EEETRESRIL
BYIRTHIETE, BN BREBR/D, EEFANKROSEETS.

B 3-12 £ A K P 5 % 9 Nb:BaTiO; AR K M K A B R A,
B, FEWBRAL A, KB 100~400nm Z 7, FEIEHN.
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l I | T

) 4&.0 50'.0 sol.o '.
2-Theta (Degree )

3
o
g
=)

& 3-11 % Nb ] BaTiO; XRD HEi¥

Fig. 3-11 XRD pattern of Nb doping BaTiOs.

Bl 3-12 Nb #$ 4% BaTiO; 3#i R L E
Fig. 3-12 SEM morphologies of Nb: BaTiOs.

B 3-13 % R 22K BE ) Nb:BaTiOs By K ZE 4 4h-7T RGBS FREMRE 15
R RI R R 4. X 3-13, RIGHERRIRSEER T B ER
BRBRRESREANENER. TFEERRNNMEL MR R R L2
—8R R ( pseudo-first-order reaction), L RYEHHEAT Bl AT
kt=InC,/C
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K Co o RRPLFFHERT W AL REF ORI C b [RACAY (6] ¢ B SE FR BV WK
B k ANENRNERIRELEE S, & 3-14 7 BaTiO; FEAR I F R W AR
REEEH k MEEBRRETR EE, B AMNE 3-13 PHERANERR
Rk TTHBZARMNUESBINRAR N R-BFREME. TUED, F#
ERBEBRRBERMERMMERA, B 0.3mol%)5 FE#E E R ZB AT K
Fo LBAIREN 0.1mol%Rf, B3 BaTiOs MM R R M H IR A,

BN TRELHBEENERRRTBAETRENFERTIBHA
B, BRBABT-ZRRNHMEEPL. BEBRRENRS, FARRELHERS.
BRAKREREN, BRRENRESMUMARDRAIBOANR, MMEELRRT
MEBER, REFARGEEILES. LBIREET 0.3 mol %if, BRES
FRFIETAERFRERNES, ROTHAERRTORE, BEELES.
EREB AR AR, RUWREEBHIT EPHhERK.

~10

0.9
-08

0.7

06 06
o {|-®-pure L
g 054 |4~ 0.05 mol% 0.5
1|—%—0.10 mol% [
047 | ——0.15 moi% [oe
034 |[—»— 0.20 mol% 03
1|—— 0.25 mol% 1
0.2+ —a— 0.30 mol% '—0,2
0.1 —o— 0.50 mol% 0.1

0.0

0.0 - | B S e — T T T
0.0 05 1.0 15 20 25 3.0
Time (h)
B 3-13 AEHBHIRBLE Nb-BaTiOs 1F4#F MB Jukhik fE-R 3] 145 «
Fig. 3-13 Concentration changes of MB dye as a function of irradiation time

with Nb doping BaTiO; being the photocatalyst.
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Ll v L} T T
0.0 0.1 0.2 0.3 0.4 0.5
Doping constration( mol%)

B 3-14 RRAEAE 115 R I 4%

Fig. 3-14 Apparent oxdation rate-doping concentration curve.

3.4 XN

1. RAMBAKARNTT %, EBENEA (1K) ST BaTiO; k. ¥k
I 100~200nm BIGKSEM, PSS ARHAN. BT FRENERFLER
B BaTiO; TESM-AT RA T AT AT R BEBELEAR, HEL BaTiO; BEH 5
BBKR. B, AT LR ETE RS .

2. BFA T =Y BaTiO; BB B . ZERRIEE W P HBOK B P BRIk 14, HERIY
FH, RRPESHEKRKERN OH, £ 1000°CHALLEEHANAH, PP 5
FA TR B AR S & RS R R

3. fE AR TR G4 K ) & R AT S AT B 4, IR BIRT AR b AT
Bk, BGTHEMA Nb,Os BEHEBFTK, FSERN. BTHETHETEH
Nb A BRI B P B 07 R 6 % Nb BRI, BIKT BRINERE.

4. FIRAT ARBRREN THRRIMDRELRERTFERERNOEZW, 245
TR HEBEEBRRER UM L. EBIREH 0.1mol%Hf, Nb:BaTiO; i)
LR S IEE R IR,
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SEUIE HeRG AL & R ORAE AL
S ————

SUE EREINTIERILHEL

4.1 5|18

R AH R AR E%ﬂj‘t?ﬁiﬁﬁu R EFESWIEAN B EE
BT EAEANGHA; FRE. BREVASHEL R FHIELEBNEEL
ZERLEFATRSY, MELBFM. LHTHItE. SHERALHERE. X
BRAFAE . MIOIILHERATEE . TR, AR, RiARIBEAZTAEFLE
ERNA. BEXTRRILELRAIIFARR D, ARSI EHEEEET
FHABRHFREREES .

FERRANEUBESH EIEEHE, FHEH NOs NHEAESLH I
HIEETAM. B 4-1 4 NiNbOc KIS H#E, Nb BFH 6 MRETFEERAN
Mk, NOs \HFESATRAE R, Ni ET#EE NbOs NHEERE T,
T Ni-O B ERE HEREXR . XEGHERIER NOs \E A HIRR
HE SRS Nb-O-Nb BEKAHF K, BH NoOs LB ENSH, *t
BRFEEBBAER, R TFERTHIE. Kudo MFFAPE Nb-O-Nb @i
I 180° X B FHIERMBA R

Jinhua Ye 1 Zhigang Zou* 1 F B #5514 T NiM,0¢ ( M= Nb, Ta)fL &4,
FHEATARBKEIES, LA THETAATAER REFALEATIERS. &
AP, S A E O2p HUEH Ni F Nb #) d BUEM K. Nifdd
PIERTFHBIML SRR T EE/FH . Nb #9 4d PUE R Ni #9 3d $1
TEIEF1ER{E 8 NiNbOs K175 Eg A 2.2eV, T 8] WOLTRBA Fe K HIE 2
FEFEHEENEHRTE. #ER NOx WARFEERE THBMNES, HEAK
RAZHERBAEEW, H NiNDOs & G5t AR UM B FEBIINIE.

A SC{F TR B SR e v ) % T MNb,Os (M= Zn, Mg, Ni, Co 5, Fe)awlegﬂ
HART HAECERTRERNIGES.
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B 4-1 NiNb, O, Fi# B

Fig. 4-1 Schematic crystal structure of NiNb,Og, viewed along (a) [001] and (b) [010] directions.

42 XRRS

DABRREERIHI & A B, MR EE S RRANIRENT: DR
(Zn(NO3)6H,0) FEAL —48 (Nb,Os). EHM(HF, 40%). TR (NH,NO3)
AFFEE (CHs0rH0) A¥IMEEREL. 3§ Nb,Os7E 80C T T HF H, HEE
P A EUKTE AL B BERRRITTE, W i%UTIEEE | THL 12~16h, Lid¥E.
WiRiE, BRTHBERKERT, R N-FERER, ERE Nb0s IR
bk 3: 1; $&MREE/REL Zn: Nb: NH,NOs=1: 2: (10-15) HJELBIHRE Zn(NO;),6H,0
1 NHNO; 3 T No-ir B BUK S, IABHAEK S &R, BEIRFRANEER
REE; #i%E B B AZE 700-800°C T #4442 30min, HBEZEMKIEAFY).

R AR Bruker AXS D8 B! X SHEATH O HI & MAK BHATRRATH &
WA, FAHHEHFHNAT H-600 BEHBEFREHENERBNESR. XA
# UV2550 (M2 ERACH) BRSO f 8tk

FEHE LR BRI T vE LR
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SEVIE SRR M % RILEAME L

43 GR5QH

4.3.1 X BE&TR S

Frig MR AL R TE — PR 18] B & KA R 5 i - SRR IR — K & A
FREBTKOMERE &, WEXSRABMEES S, FESREERS, FE
EURMRE, A H—%aE. T Nb 5B TEEETUSHEETF
KRG TEENERS, BEZRNBRIBPEFRISEE, FYERELT. HE
o EIFEREMPGERE RS, BEFHEL. FERENFMEBEEHNS
B A FBEAEX Fry 4 BB e EEZYW.

B 4-2 A ERBETE I % ) ZoNb,O ¥ K () X S & HT5 B . 724 MNb,Og (M=
Zn, Mg, Ni, Co, Fe)¥¥J A8 —4H. ZnNbOs W IER & F, ATH B Sirut ELEY
B1RF, HRER. MgNbOs YIEXBR, SRR ZoNb,0 £, FOERE
3. Ni, Fe #l Co MEEME BN ERRR, SREBL. HBILHYRAATS
Big, DL YRBAERER, MAXEEFHERAOMEMERD, HEX
JURES FRERE/\E R AE A RIS PR H 5 BT SR E AL B AR, LR
) R B R R S H L

znnbo data
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3
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N

Fe2 dafa

1000—
800—

600—
400— ‘
L

200—

HLT.. k. l_‘{;i

0 50.0
2-theta (Degree)

20.0 30.0 60.0 70.0 80.0

Intensity (a.u.)

72-482 Cobalt Nlobwm Oxde

I T T I I ]
100 200 3.0 40.0 50.0 80.0 700 80.0

2-theta (Degree)

B 4-2 MNb,Os ( M= Zn, Mg, Ni, Fe, Co) ) X S £k475 ik
Fig. 4-2 XRD patterns of MNb,O¢( M= Zn, Mg, Ni, Fe, Co).

432 EHBEKEIH

B 4-3 H1RPEIE A B NiND,O ¥ B ST B S B, BOKREEN 10 T 8.
% B NiNb,Oe HIRL BV T, BRI B2 KLZE 100~200nm 2 [a], /NEUKLE B8
BHE, Xt TFHE MNb,O ¥ K, FESRWR WL, XMERNY R difr R R
BEHRERTRER . EHAT, EVDFERAREUEKRER CO, AIAEK
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WRKEREEMRX

RERE, FRRIZENERBERNESHBLEDHRE, SKkaBELH
RERERESR. SEHRRSERANTERNE D, BEESIHTEHE
IR BN, K% HE 100nm B .

B 4-3 EMBRIEN BEHE

Fig 4-3 TEM morphology of NiNb,O.

433 BESXRIH

BESHERHMRATENRAERNABREKRINEETR. BdELBRS
KB RATSL, TILUES H BRI, B 44 ) MNb,O(M= Zn,
Mg, Ni, Co, Fe)f1i@ & 51 Rliil . MgNbyOs H1 Zn Nb,Og BT 1 7 I ZE 420nm
AT, BTEEFMEINEEER. T NiNbOs Z 550nm HTE B HEIRRIL,
£ 680nm FEKMIFEBHEA BRI, XRS5 Jinhua Ye ML RPHE 3. Ye
FH R4 H Ni NbOg 75 600nm DA LB KRR RS BIE, RAITA LS BRI
R HT7E NiNbOs FH P FRELKITME R . FeNbOg M7E 200~800nm A i
KEBRAREERNRE, XHARKSTESRIMNBFERTNHX.

X ERER L ARERKNGIE L, NMERENEREEAE. RBEN
REWNK, MEBRKNSEUNEARLET . X FREEAFIREE A TRER LR
HFEANIHOERRI S, AMERMEFERELTH .

FSEHABREBHETREERE . RELISEMEBERESHREREZ
R AR R AR

1240
Eg(eV)

A=hc/Eg



FIE FeRhrm & LI

p—

ZnNb,Os, MgNb,04, NiNb,Os, FeNb,Og F1 CoNb,Og HI TR X 818 43 5l &7 415nm,
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Fig 4-4 UV-Vis diffuse reflection of MNb,O¢( M= Zn, Mg, Ni, Fe, Co).
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Fig. 4-5 Reaction time dependence of variations of MB on MNb,Og( M= Zn, Mg, Ni, Fe, Co).
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Fig. 5-1 Charge transfer in a MMCT process.
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Fig 5-2 XRD patterns of Niy sTig sNbO, made by different burning tempretures.
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Fig 5-4 TEM morphologies of (a) Cuy sTiosNbO4 and (b) Nig 5Tip sNbO;.
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Fig 5-5 UV-Vis diffuse reflection spectrograms of NiNb,Og, Cug sTio sNbO, and Nig sTig sNbO,.
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Fig. 5-6 Photodegradation of MB with CugsTip sNbO,4 and Nig sTig sNbO4 being catalysts.
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Fig. 5-7 XRD patterns of LaTiNbs, CeTiNbOs and NdTiNbO.
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Fig 5-8 TEM morphologies of (a) LaTiNbg, (b) CeTiNbOj , (c) NdTiNbOs.
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Fig. 5-9 UV-Vis diffuse reflection spectrogram of LaTiNbOs, CeTiNDOs and NdTiNbOs.
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Fig. 5-10 Concentration changes of MB dye as a function of irradiation time with the samples

LaTiNbQg¢, CeTiNbOg and NdTiNbOg under UV-Vis irradiation.
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~HEE 100~200nm ZJ8), AFKEMBERE. B AT REENIRIIENL
EALEE I T BFF, NiosTiosNbOg BILAEILRE VEREF, 7EIN 400nm ¥EXC €%
HHMEIEIT, {IRELE 3h ERAE T0%MIFEL .
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6.1 &t

A LUK R BK L HI1 & 5B 2. R SRR M sl &4
FENE, FUARBENREARELR, HiT BaTiO; B, MRk
RREL LA RE

1. At K AE BT & B T BaTiOs ¥4 . ¥3°K B3 100~300nm 7 &
RIARL, REHSHERAN. BREES-TRATETRATAELE DR
%, FRER BaTiO; KB EEXR. MEEHK, THTARECREFZ T
¥, HWITTHEN BaTio; KME, IAERMEER B KNER RN
BaTiO; ¥4k, ABIUGAE, &K ZHKE OH, 7 1000°CHAE 5NN
H, HAEEBEEEARSEERK. EH& Nd BROKRIR AN, RiMET
BRI B 5 & A AT HE AT I A A B s K #E $l % BaTios MAT
WARBPHITHER, BT NbOs HFRBMASERN. AT ARBRK
BEXT AU RIELRE I, 25T RN H $BE 5 2R R thek,
B BB IIKE R 0.1 mol%HEt #EALFIHE AL BE H B8

2. fEATERR R REEILHI & T MNbOg (M=Zn, Mg, Ni, Co, Fe) L (L1,
X S&ATH R A, BARRAERE 30~40nm Z 8K MBRRET
B R G 1, X PP ) B R BT IR R SR MR PRIE IX T B & T TR OB BT B8
f. RS HARYBGEIT T RIE, EdEREBERALR, XHLEL
Be AT THIFT, RIS T Wik B NiNbOg L EE B3R, HIKA Mg
Zn HIHERRER, ETRBURET I Fe A1 Co MRS ML BE RIS 2E, M85t
EHERTI N [T RR, HERMRERE Y T HOb R,

3. HAFEREREESET ZMER Cu M1 Ni MEKEE, BWANRE
100~500nm 2 [8], AR BRI AR, Wit HREHA T PR ELH AR ELEESD
BT THR. LHRH NigsTiosNbO, FIYEHEAE S BGR, 7EHN 400nm L F 8
FERIRMERT, BEETE 3h PIREAR 70%H0 5Kl . AP ER AR EHIET
ZHHASBEMRKERE, MERKRE 60~150nm Z 8], RESHEHS. BKE
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4. AL A M CeTiNDOs, CoNb,Og Fil CuTiNbO 2 IR MU IR IV R, St
RE B E . BT MRSk BTFEL, FHARBGER, R
58, [ERHEAEX UM ENE SR ERMFHOEY, ERTXILHYHRERE R
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6.2 RS2

AXEERRT ILAF RS &5 ERB IS RGN .

KRB KRES T BaTiOs 3T HHITT Nb B2, (HE Nb BRM T4k
RIVLEARNDMREERER, £BEFHB RN TRELME LSRN
TR BEAER. I BB TFBAKEKK, MBRTEESEBP BRI
HEAE. TR TENEDE Nb BRHEAFR. KRB FHBRAE
ERBE. KA, EEEBINFREAMEMETRRERNE, I
. BEURENEFRHTESRE NS, N EEREIOLELES.

B BREMEES& T SHE FRREREMERRE, X—XYRBRAL
AR, ERNTRAREFHEZRNBEK. EHAX—RWFEEREE,
B, RERERE, HOLELENDERRIEH. 5, CeTiNbOs, CoNb20s
# CuTiNbOs % B M AL AE 55, (B TRMAERBUER T DMES Z &b
UHE RS, FRERBEMEES . AREGEEFE LR ERNYR
HE, mREARELREE.

TR, BB AT B AL 1 BRI B SR A R &3 F T
BRI, eEATIRBERE. ERABRKTEEERAIEEBRTFERS
PrEE N IRET SRR U B EAERAR B R RIES. BET, AT H
FEEPERRFNEAME L HLEIRR S BE R AR EIEA,
BT WAL A B B R A R AR R R BRI, SR B R R
MR .
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