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ABSTRACT

ABSTRACT

The cooling system plays important role the injection molding. To most injection
mold, the cooling is realized through the coolant flowing in pipe network. So-called
cooling pipe network analysis is to determine the flow rate for each segment and the
pressure at segment joints (nodes) when the basic parameters are known.

By the analysis, not only can we be sure whether the coolant pump can provide
enough press to ensure the flow rate of the network, but also we can predict the
coolant-flow distribution in all subcircuits if they exist.

The cooling pipe network of injection mold is similar to the water network to a
certain degree. Up to date, the general pipe network analysis is well developed, so its
theory and numerical method is also widely applied to the pipe network analysis in the
cooling system of injection mold. For example, some CAE software for injection mold,
such as MPI, C-MOLD, which are considered as word class software, and Z-MOLD
developed in our country, are using the general technique of pipe network analysis.
However, there are still some shortcomings in the current numerical analysis for cooling
pipe network of injection meld. Firstly, both junction method and loop method, two
main methods used for the network analysis, have their own disadvantages. Secondly,
whether the general network analysis is completely applicable to our special problem is
questionable, and no convincing research has been reported.

On the basis of the theory of pipe network analysis, the present work is
concentrated on the special study of the cooling pipe network of injection mold. The
main work is as follows:

1. The traditional pipe network analysis was deeply studied, and various numerical
methods were reviewed and compared. A new numerical solution to the pipe network
analysis, named as junction method with flow rate modification, was presented to
overcome the shortcomings existing in the present analysis. The related mathematics

model was formulated and the computational frame diagram was given.



ABSTRACT

2. Based on the new method, the computer program code was written with C++
language. The given examples proves that the new method is more powerful and can
successfully overcome the disadvantages of the present numerical methods.

3. The experiment was made to determine the flux-pressure relation in the cooling
pipe of the mold. The experimental data were analyzed and compared to the
theoretical calculation. It was shown that the current calculation methods of the
cooling pipe network of injection mold have serious problem. The results calculated
by almost all CAE software, including MPI, are not correct. The reason of the
problem was analyzed and some modification to the previous cooling pipe network
analysis of injection mold was given, including some qualitative conclusion

Keyword: Pipe network; Junction method; Loop method; Injection mold; Coeling system
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x4 ERFESH
Tab.4.1 Flow rate in pipe network
EERE HEQ m’-s") gy HEQ (m-sT)
1 16.67x10° 7. 8 0
2, 4 4.95911x107 9, 12 4.95911x10*
3,6 4.95911x105 11, 13 4.95911x10™®°
5. 10 6.75285%10° 14 16.67x10°
Fz42. BWEHSH
Tab.4.2 Nodal press in pipe network
PFHE EH piPa e EH piPa
1 348.252 5 0
2 203.832 6, 7 188.979
3 174.126 8.9 174.126
4 144,42 10, 1 159,273
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