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ABSTRACT

With the development of national economy and traffic system, automotive
industry has been developed at very fast speed. As a part of the truck, the frame
supports all kinds of complicated loads coming from the road and freight. And many
assembly of the truck are built in the frame. So the intensity and the strong of the frame
play a very important role in the design of trucks.

A model of the frame is established by using CAD in this paper. The static
intensity of the frame is analyzed in the situation of bending, torsion, braking and
swerve by ANSYS. The result indicates that the stress of the frame is less than the
utmost intension. And the frame is satisfied with the design. The model analysis of the
frame is studied. The mode vibration model and proper frequency of the frame are
calculated by mode analysis. The local intension is considered by the frequency and
the model. Finally, a parametric model of the frame is established. The section size of
the frame is optimized by ANSYS. The result indicates that the weight of the frame is
decreased and the material of the frame is saved.

Herein the research of FEA and ANSYSS sofiware offered a set of basic theory and
method for the frame structure and simulation of dynamic characteristic. It not only
laid the foundation for the problem of truck vibration, fatigue and noise, but also

provided the guiding significance for the working of manufacturers.

KEY WORDS: frame; finite element; modal analysis; structure optimization
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Table4.1 Load distribution on the frame
y B BB AR RPN E
IR R (Kg) X (mm) Y (mm) Z (mm)
g SR 612 678.4 432.5 319.1
REPLE IR 633 4628 432.5 52
EHREY 6122 4028.3 4325 521.4
1 2 3 4 5
1 2 3 ! 5)
B 4.2 8 F XA E

Fig4.2 Sketch of key points on frame
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Fig4.3 Load distribution under the situation of bending
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Fig4.4 Displacement under the situation of bending
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Fig4.5 Displacement under the situation of bending
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Fig4.6 Stress distribution under the situation of bending
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Fig4.7 Stress distribution on local frame under the situation of bending
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Table4.2 Stress and displacement of nodes on frame under the situation of bending

BimfrE WS M. }1/MPa A% /mm
1-1 (%) 628 1.506 0.012
1-1 CH) 61 1.423 0.012
222 () 3247 3.339 0.070
22 (A 2740 3.416 0.070
3-3 () 3248 6.187 0.019
3-3 (4D 2741 6.313 0.019
44 () 3249 8.074 0.029
44 (47) 2742 8.036 0.029
5-5 (£ 3250 1.679 0.173
5-5 (A7) 2743 1.678 0.173
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Fig4.8 Displacement under the situation of torsion
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Fig4.9 Displacement under the situation of torsion
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Fig4.10 Stress distribution under the situation of torsion
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Fig4.11 Stress distribution on local frame under the situation of torsion
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Tablele4.3 Stress and displacement of nodes on frame under the situation of torsion

IR OAS Es i J1/MPa AL /mm
1-1 (/£ 628 5.201 99.29
1-1 (£ 61 5.761 7.10
22 () 3247 10.101 68.93
2-2 (A 2740 6.600 1.72
3-3 (%) 3248 4.903 1.54
33 CA) 2741 10.712 1.57
44 () 3249 9.607 1.72
44 (4D 2742 2.614 2.14
5-5 (%) 3250 1.645 11.03
5-5 () 2743 1.741 12.60
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Fig4.12 Displacement under the situation of braking
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Fig4.13 Displacement under the situation of braking
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Fig4.14 Stress distribution under the situation of braking
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Fig4.15 Stress distribution on local frame under the situation of bending
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B RHIE) TOUT E5R e S KRR R MG B 2R 4.4 iR
FERBBFTHT, AR 44 PATLLEFRFERUR ERRN N RAEERRE
SRR, BRN AT 26MPa, FESRUZE b & RN A 35T N F R JE IRGR BE

HEAARZERE

R 44 FIBNTIT AR S KR TN A%

Tableled.4 Stress and displacement of nodes on frame under the situation of braking

LAy HAES N J1/MPa {7 #/mm
1-1 (%) 628 5.201 0.020
1-1 (41 61 5.761 0.020
22 (&) 3247 8.91 0.007
2-2 (F) 2740 8.91 0.007
33 (%) 3248 8.62 0.012
3-3 (41 2741 8.62 0.012
44 (£ 3249 6.79 0.017
44 CF) 2742 6.79 0.017
5-5 (%) 3250 4.45 0.023
5-5 () 2743 4.45 0.023
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AR B SMEE TR B HE UZ. HUn A B E UX, BBIZTT Rt
WHEBHE; ARERERMELYSHEEFRALE UZ, BREKFRE
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Fig4.16 Displacement under the situation of swerve
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Fig4.17 Stress distribution under the situation of swerve
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RS TR T ERPPE SRR SN DR BENE 4.5 fin. WK
4.5 M RER TR , ERINAR NI BRI E S =R S
SEVUMBIR ], BN JIH 26 MPa, T/ T EIRGRE .

£45 REHBIRTERYRPRBSRNANY

Table4.5 Stress and displacement of points on frame under the situation of swerve

AL AT VRS . J1/MPa AL ¥ /mm
1-1 (&) 628 1.53 0.013
1-1 (4D 61 1.43 0.013
22 () 3247 3.34 0.069
22 (4D 2740 3.54 0.070
33 (&) 3248 6.31 0.024
3-3 Ch) 2741 6.57 0.024
44 (7 3249 8.79 0.008
44 (A7) 2742 8.79 0.022
5-5 (%) 3250 1.77 0.132
5-5 CH) 2743 1.77 0.132
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R5.1 EREMBR
Table5.1 Frequencies of frame

Fr & PiE/MZ B AAZJE /mm W AVFFAE
1 97.442 28.113 —Hrah
2 98.272 14.816 —Br %%

3 137.73 15.538 ZHAsh

4 138.57 27.919 #35)

5 183.48 23.797 ¥ 2

6 193.97 20.068 HF+5

7 206.33 17.644 ZME i+
8 216.76 14.946 B A
9 226.17 31.473 e
10 254.57 20.926 =B

HESIZES20ERMEMREE TS Y, B RERSEHNMO—HNET
Hiks), FREBMIRBEK, LBRIERD: BoMRFERY—HERE,
RAETRIRIBER: BB RERN N E ihRE, BARIBITER P HUH
RERNPEEIRE, RIBANEA: BEMRERN —HAERE: HAH
RERN—HEMAAENESRE: BLMRERNEERE, HELEN K
BHMRNNES: B\ ERN NS hREEANAERENES. FRNE
ER=NE R FTHRER=HERE.
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! ANSYS
NWODAL SOLUTION

P MAR 24 2008

3UB =1
FREQ=97.442
Y {AVG)
RSYS=0

DMX =.028113
SMN =-.004528
SMX ».027994

- 009922 017152
-.9152-02 006312 .0123%4 020787 .027994

File: 205

Bs.1 FERE—HriRE
Fig5.1 First set frequency of frame

APR 2 2008

STER=1 22:14:12

SUB =1
FREQ=97.442
Y (AVG)
R3YS=0

DMX =.028113
SMN =-,004528
SMX «. 027994

017183 '
020767 027994

y ANSYS
FODAL SOLUTION

E5.2 FERE—MH EEBIRE

Fig5.2 First set frequency of local frame
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b ANSYS
HODAL SOLUTION

MAR 24 2008
-1
3’-2 21:12:22
FREQ#93.272

Y (AVG)
R3YS=0

DEX =.014816
SHN =-,009841
$MX =.001555

- T -.004776 .239T-0:
~.008574 -, 006042 -.008508 -.977C-03 001535

B5.3 ERE_MiRE
Fig5.3 Second set frequency of frame

B5.4 EHRE W BHERE
Fig5.4 Second set frequency of local frame
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' ANSYS
KODAL SOLUTION

e 1900
SUB =3 213
FREQn137.734

uy (AVG)
R3YS=0

DMX =.015358
SMN =-.007821
SMX ».015286

C -.ovzEee 00z447 007582 ~0127
~.005254 ~.1195-02 005018 010151 .o15288

Bs5.5 FRE=HriRE
Fig5.5 Third set frequency of frame

NODAL SOLUTION

STEP=1

SUB =3
FREQ=137.734
oY {AVG)
RSYS=0

DEX =.015358
SMN =-.007821

SHX =.015286

Es5.6 FRE=HEEIRE
Fig5.6 Third set frequency of local frame
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k ANSYS
NODAL SOLUTION

v m oo
SUB =4 e
FPEQ~138.568

ur {AVG)

RSYS=0

DMX =.027919

SMN =-.001756

SMX =.003601

~ 001756 . 3835-03 625L-03 601615

-.001161 ~297C-04 00122 .90z41 . 003201

File: 205

B5.7 FEZREMMiRE

Fig5.7 Fourth set frequency of frame

WODAL SOLUTION

STEP-1 zz?xg?gi
SUB -4 s18:
FREQ=138. 566

w (RVG)

RSYS=0

DX =.027919

SMH =-.001756

SMX =.003601

001815 :
.0025601

E5.8 ZEZRE MM FERIREL

Fig5.8 Fourth set frequency of local frame
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' ANSYS
NODAL SOLUTION

STEP=1 HAR i( ioog
SUB =S 21:14:1
FREQ=183.483

uy {AVG)
RSYS=0

DMX =.023797
SN =-.687E-03
SMX =.001203

‘ 159L-07 s70L-02
-.477c-02 ~.5705-04 .260L-02 .787L-03 901293

E5.9 ERERHRE
Fig5.9 Fifth set frequency of frame

- 6a7E-03 2802 150207 .s10L-02 )
-.477L-03 -.$70E-04 L2628~09 18903 001203
File: 205

E5.10 ERE R EEPIRE

Fig5.10 Fifth set frequency of local frame



AT AT R CAEHT

44

1
RODAL SOLUTION

STEP=1

3UB =6
FREQ=193.87
Uy {AVG)
RSYS=D

DMX =.02D068
SMN =-.001198
SMX «,004835

File: 205

ANSYS

HAR 24 200B
21:15:04

149%
.5282-02 -8102-03 -004835

BE5.11 ZEZRERMIRE

Fig5.11 Sixth set frequency of frame

KODAL SOLUTION

STEP=1

SUB =6
FREQ=193.97
uy {AVG)
R3YS=0

DEX =.D20068
SMN =-.001198

SMX =.004335

001982

23E-02

BE5.12 FEZEE R EHERRE

Fig5.12 Sixth set frequency of local frame
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! ANSYS
NODAL SOLUTION

STEPaL HAR 24 2008
B -7 21:15:28
FREQ=206. 332
14 (AVG)
RSYS$=0

DEX =.017644
SMH =-.016889
SMX =.017497

1606 603 13677
-.013068 -.005427 .002214 009856 .017457

E5.13 EZRELMIRE

Fig5.13 Seventh set frequency of frame

WODAL SOLUTION

STEP=1

SUB =7
FREQ=206.332
Y (AVE)
R3Y3=0

DX =.017644
SMH =-.016889

SMX =.017497

4247006038
214 . 009856

E5.14 ERELM EIiRE

FigS5.14 Seventh set frequency of local frame
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1
NODAL SOLUTION

STEP=1

SUB =3
FREQ=216.756
uy (AVG)
RSYS=0

DMX =.014546
ZMN =-,725E-03

SMX =.003401

ANSYS

MAR 24 2008
21:15:52

’ L1928-03 oo 002026 )
~.2672-02 6502023 -001567 002404 003401

B5.15 FZ2E/\MricE

Fig5.15 Eighth set frequency of frame

EODAL SOLUTION

STEP=1
SUB =8
FREQ=216.756
Y (AYG)
RSYS=0
DHX =.014946
MY =-.725E-03
$MX =.003401

Es5.16 FEZ2E/\Br EEpiRE

Fig5.16 Eighth set frequency of local frame
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! ANSYS
KODAL SOLUTION

TEP-1 mzf-‘x?-’?f
SUB =9 e
FREQe226.174 ;

uy (AVG)

RSYS=0

DMX =.031473
ZMN =-.002497
SMX «.001467

16 TRIL-03 - 486202
~.002087 -.001176 ~.g9sr-02

.S$8EL-0D3

File: 205

E15.17 EREAMRE

Fig5.17 Ninth set frequency of frame

WODAL SOLUTION 7
2 2008

3’:; 22:22:07
FREQ=226.174

Y (AVE)

RSYS=0

DEX =.031473

SMH =-.002497

SMX =.001467

iy -.7358-02 1482793
. 001176 =.295L-023

E5.18 ERENM EERIRE

Fig5.18 Ninth set frequency of local frame
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MAR 24 2008
pal
g 1o 21316:32

FREQ=254.574
uy {AVG)
R3Y3=0

DMX =.020926
SMN =-.B30E-03
SHX =.001635

~.282L-03 263L~D3 ’ 61
~.356L-02 ~.3490C-08 -$392-02 .001087 001235

: ANSYS
NWODAL SOLUTION

B5.19 E2RE+HiRE

Fig5.19 Tenth set frequency of frame

1
BODAL SOLUTION

STER=1
SUB =10
FREQ=254.574
uY {RVG)
R3Y5=0
DMX «.020926
SMH =-.B30E-03
SMX =.001635

A

" " 4 s T, v
=.586£-03 ~.842L-05 -§392-03 .001087 001635

E5.20 E2E+HEHRIRE

Fig5.20 Tenth set frequency of local frame
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Fig6.1 Data flow diagram

6.2.2 ANSYS Lt ig it BB A g fgla i

ANSYS PRAL B AT LUE S PR 7 kRSB, BPfbAb 3 7 M0 GUI . X
BT B EN R TR T ANSYS MAREEANET IR TEESEYS
o

Xt F R FH IR BN TS KR CndE&i), AadmAB Ml
SAE IR AL T AR BAT MU E A RE. REFTXEFERAREE, WA
A LASERT B BRSNS R £/ GUI HRGHTH, BENEER AN
Bract, ARG RAAC B FTAR B Sh e AT AL AR A, DA e it i), (8
TRREMALL AT XA H MR ETT LU B A P 48/l ik
AN, AEPRAIE R B 5 IR .



BAR FRAERLRT 53

AR H AU T IUA PR, XD BRYE T AR BN AR (it
AP EL GUD T i %51

Q4 BIEH BT I BT S, S SR FEIEA WL, W EL b %
LT %4

1) BT RE AR,

2) K&,

3) RAGHECRATZERN BARE .

@7t ANSYS FiRFERE 5T AP ERMN NS R X—5 2 ink
#If, BAZWIR (BEGIN B OPT).

@t OPT 4bHEE, faE@/rhiX#k (OPT).

@ ERHLE.

@ik A T BRI

@ ERMEREHI T K.

@HFATRAL ST

@BEEFWIHFIIER (OPT) Mj54tH 2 (POSTI/POST26).

6.2.3 ANSYS fift TH

ANSYS Rft—Sh TR A, BRAZRKER. BARRMIR—E
R BRZ B, Bl BV BEE AR T RN T AR €. BB E
Bt &, FEZTHAKRLT A0,

© LB, ER—IKIEFHRE—A FEA f#. ATESENERER, &
KRR EAF M3 EPFA BARRBUS ROt R RN RR.

@ FERIE R ZRER, BRIEHRREMGEIAR, PR E 8RS
BRBAH BB . X THE EERRF R 8 354 B 4L
TR LG AR

@ FLKERE. U ANSERUIFIIAES, ZTREREANRITFS,
EHRRR— P REBRITEEEZHCRNSR R ER. T BRRENRE
A B (R AR VPG T DAR % T A s,

@ TTFHHEE —ANFEIF TR, FRERBE TR ERRER A M
Fol. XMBASKRZ ALREIHRAMER. 5EH M EEERRL N7
W, FEAREHHEERBRENRATEMXRNELZN.

® BiBES. AP ERENSERIFES, % TRETHE B RREARESR
BXRIFEBIBRE, 7T E R R R Ut .

6.3 ZERMLIHRBERYEIL



BAE ERNBEEAR 54

454 ANSYS FriRftimthib i7vk & APDL &5 BT A BRI SBL i Th
A8, M SVrRIEEEE BT CLSE R E SRR . TSN
WA, BHEMEE R, ZEIIMAENNERD, TRIEREE
KEHIFENTE, fEREMRAL R EEE RTEER, RERHRALENLE
PRIGHEE!, KH UL BEAMI8S B2 G AR A RoHE R, RS A& A
{ERERSE LR T

el AR ST ¥ -y B

OVHURITE RS

A3 PASFA B R SEGH AT A A B B R 2R AR v i /8, BRBAVA T
RIFRENSHRERIRHBEORT, wWH 6.2 Fir.

He62 BFRiIHTEMNNREERT

Fig6.2 Section size of the beam

QI EMEMFE

@I TTER! Beam188.

@2 ST AR TH R

X TFHRMEHIER, EMARTENTERMASH, MALHME.



ENE FEREERL 55

O T RN,
©% X5 il 7t %
DB BA FRICAE R SO A

6.4 MMILERRSHT

AL R 6.1 Fim. K 6.3 FIE 6.4 MBI KA B BEH AT
AR, M ATLAE AT 10 ISR EHER SRS REERK, B 14
VAR LAE sk B2 TR, Z¥ 500 H AR AR .

' ANSYS
OPTIMIZATION
TvoLy MAR 22 2008
TVOLU 17:p8:2Z1
(=l0T*-2)
o8
z
1.92
.84 \
R
Value , \
1.6 \\
1.5z \\
1.4 N
1.96
1
1 7 12 1
4 10 1% 22 E]
Set Fumber

B 6.3 FRIFFAT Lk
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Fig6.4 Curve of the frame’s maximum displacement
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Table6.1 Optimization results
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