免費預覽已結束,剩余7頁可下載查看
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第十四講等腰三角形中考要求板塊考試要求A級要求B級要求C級要求等腰三角形了解等腰三角形、等邊三角形、直角三角形的概念,會識別這三種圖形;理解等腰三角形、等邊三角形、直角三角形的性質和判定能用等腰三角形、等邊三角形、直角三角形的性質和判定解決簡單問題會運用等腰三角形、等邊三角形、直角三角形的知識解決有關問題知識點睛等腰三角形1 等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形2 等邊三角形的定義:有三條邊相等的三角形叫做等邊三角形3 等腰三角形的性質:(1)兩腰相等(2)兩底角相等(3)“三線合一”,即頂角平分線、底邊上的中線、底邊上的高互相重合(4)是軸對稱圖形,底邊的垂直平分線是它的對稱軸線段的垂直平分線:性質定理:線段的垂直平分線上的點到線段的兩個端點距離相等判定定理:與線段的兩個端點距離相等的點在這條線段的垂直平分線上,線段的垂直平分線可以看做是和線段兩個端點距離相等的所有點的集合4 等腰三角形的判定:(1)有兩條邊相等的三角形是等腰三角形(2)有兩個角相等的三角形是等腰三角形5 等邊三角形的性質:三邊都相等,三個角都相等,每一個角都等于6 等邊三角形的判定: (1)三條邊都相等的三角形是等邊三角形 (2)三個角都相等的三角形是等邊三角形 (3)有一個角是的等腰三角形是等邊三角形7 等腰直角三角形的性質:頂角等于,底角等于,兩直角邊相等等腰直角三角形的判定:(1)頂角為的等腰三角形(2)底角為的等腰三角形重、難點重點:探索等腰三角形“等邊對等角”和“三線合一”的性質,這兩個性質對于平面幾何中的計算,以及以后的證明都有很大的幫助 難點:等腰三角形關于底和腰,底角和頂角的計算問題,由于等腰三角形底和腰,底角和頂角性質性質特點很容易混淆,而且他們在用法和討論上很有考究,只能在練習中加以訓練例題精講板塊一、等腰三角形的認識【例 1】 下列兩個命題:如果兩個角是對頂角,那么這兩個角相等;如果一個等腰三角形有一個內(nèi)角是,那么這個等腰三角形一定是等邊三角形則以下結論正確的是( )A只有命題正確 B只有命題正確C命題、都正確 D命題、都不正確【解析】 C【例 2】 如圖,在 中,于請你再添加一個條件,就可以確定是等腰三角形你添加的條件是 【解析】 或平分或【例 3】 (2006年揚州中考)如圖,在中,、分別是、上的點,與交于點,給出下列四個條件:;(1)上述四個條件中,哪兩個條件可判定是等腰三角形(用序號寫出所有情況);(2)選擇第小題中的一種情形,證明是等腰三角形【解析】 (1),四種情況可判定是等腰三角形(2)下面以兩個條件證明是等腰三角形,是等腰三角形【例 4】 如圖,點是等邊內(nèi)一點,將繞點按順時針方向旋轉得,連接,則是等邊三角形;當為多少度時,是等腰三角形?【解析】 分三種情況討論:要使,需,要使,需,要使,需綜上所述:當?shù)亩葦?shù)為或或時,是等腰三角形【例 5】 (2007福建晉江中考)如圖,將一個等腰直角三角形按圖示方式依次翻折,若,則下列說法正確的個數(shù)有( )平分; 長為;是等腰三角形; 的周長等于的長A 1個; B2個; C3個; D4個【解析】 由圖可知,又,的周長又,是等腰三角形故正確【例 6】 如圖,分別平分,問:圖中有幾個等腰三角形?過點作,如圖,交于,交于,圖中又增加了幾個等腰三角形?如圖,若將題中的改為不等邊三角形,其他條件不變,圖中有幾個等腰三角形?線段與、有什么關系?如圖,平分,平分外角交于,交于線段 與、有什么關系?如圖,、為外角、的平分線,交延長線于,交 延長線于,線段與、有什么關系? 【解析】 圖中有兩個等腰三角形:、圖中又增加了三個等腰三角形:、圖中有兩個等腰三角形:、,由于,故圖所示中仍有兩個等腰三角形、從而,又,故如圖所示與類似,板塊二、等腰三角形的性質【例 7】 (2008烏魯木齊)某等腰三角形的兩條邊長分別為和,則它的周長為( )A或【解析】 【例 8】 已知等腰三角形的周長為,一腰長是底邊長的倍,則腰長是( ) A B C D【解析】 B【例 9】 (2008沈陽)若等腰三角形中有一個角等于,則這個等腰三角形的頂角的度數(shù)為()A或或【解析】 【鞏固】(2007重慶中考)已知一個等腰三角形兩內(nèi)角的度數(shù)之比為,則這個等腰三角形頂角的度數(shù)為( )A B C或 D【解析】 當?shù)妊切蔚捻斀菫殁g角時,內(nèi)角的度數(shù)之比為 ,此時頂角為;當頂角為鈍角時,內(nèi)角的度數(shù)之比為 ,此時頂角為故選【例10】 (2007四川自貢中考)若等腰三角形一腰上的高和另一腰的夾角為,則該三角形的一個底角為( )A B C或 D或【解析】 C【例11】 (2006自貢)從等腰三角形底邊上任意一點分別作兩腰的平行線,與兩腰所圍成的平行四邊形的周長等于三角形的( )A兩腰長的和周長一半周長 一腰長與底邊長的和【解析】 A【例12】 (2000年常州市中考題)已知等腰三角形一腰上的中線將它們的周長分為9和12兩部分,求腰長和底長【解析】 設這個三角形的腰長為,底長為,則,解得,或,解得,而8,8,5和6,6,9均能組成等腰三角形注意等腰三角形中的分類討論【鞏固】等腰三角形的周長是50,一腰上的中線分得兩個三角形的周長是32和22,求腰長【解析】 設這個三角形的腰長為,底長為,一腰上的中線為,根據(jù)題意可得:或,解得或【例13】 (05年青島中考題)已知等腰三角形的周長為12,腰長為,求的取值范圍【解析】 ,且,解得【例14】 已知等腰三角形的周長為16,三邊長為整數(shù),求底邊長【解析】 設腰長為,則,則,底邊分別為6,4,2【鞏固】已知等腰三角形的周長為20,三邊長為整數(shù),求底邊長【解析】 設腰長為,且,解得,則腰長為6、7、8、9,對應的底邊長為8、6、4、2【例15】 等腰三角形中一角是另一角的2倍,求各內(nèi)角的度數(shù)【解析】 (1)若底角是頂角的2倍,設頂角為,則,三角形三內(nèi)角依次是,(2)若頂角是一底角的2倍,設底角為,則,三角形三內(nèi)角依次是,【例16】 已知是等腰一腰上的高,且,求三個內(nèi)角的度數(shù)【解析】 若為鈍角三角形時,為頂角時,三內(nèi)角大小為140,20,20;若為鈍角三角形時,為底角時,三內(nèi)角大小為100,40,40;若為銳角三角形時,為頂角,三內(nèi)角大小為40,70,70【例17】 在中,求【解析】 設,則,在中,可得,【鞏固】在中,求【解析】 設,則,在中,解得【例18】 (2000年威海市中考試題)等腰三角形的頂角,如果過它的頂角頂點作一直線能夠將它分成兩個等腰三角形,求【解析】 由題意,畫出圖形如圖所示,這里,和都是等腰三角形,設,則,中,【例19】 的兩邊和的垂直平分線分別交于、,若,求【解析】 根據(jù)題意可得:,則即,解得【例20】 (河南省數(shù)學競賽)如圖,在中,在上,在上取一點,使得,求的度數(shù)【解析】 由題設,及三角形外角定理,即,有而故,即【例21】 (2001年龍巖市、寧德市中考試題)如圖所示,已知中,、為邊上的點,且,求證:【解析】 作于,又, 考察垂直平分線的性質【例22】 如圖,為等邊三角形,延長到,又延長到,使,連接,求證:為等腰三角形【解析】 延長到,使得,連接為等邊三角形, 又為等邊三角形 , 【例23】 如圖,在中,為銳角,分別為邊、上的點,滿足,且求證: 【解析】 分析若,則問題迎刃而解直接證明困難,可考慮反證法解 若,則在上取一點,使,連接交于,連接在與中,故于是有,所以,從而,故從而有但另一方面,由于,知,所以從而矛盾故假設不成立若,同法可證假設不成立綜上所述,于是由知,從而說明:在某些平面幾何問題的證明中,反證法也是常用的方法家庭作業(yè)【習題1】(2007雙柏中考)等腰三角形的兩邊長分別為4和9,則第三邊長為 【解析】 當腰長為9時,三邊長為4、9、9;當腰長為4時,三邊長為4、4、9 ,不符合三角形的三邊關系,故腰長為9【習題2】(1997年北京市競賽題)等腰三角形一腰上的中線把這個三角形的周長分成和兩部分,則這個等腰三角形的底邊的長為( )A B C或 D無法確定【解析】 設腰長為,底邊長為,此題可分為兩類,或,第一類無解;第二類解為,故選【習題3】已知等腰三角形的周長為20,腰長為,求的取值范圍【解析】 ,且,解得【習題4】(2001年江蘇中考題)如下圖所示,中,在上,求的度數(shù)【解析】 設,則,由外角定理得,即,則又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年東城街道辦事處招聘工作人員23人備考題庫帶答案詳解
- 2025年海南大學儋州校區(qū)醫(yī)院公開招聘高層次人才的備考題庫及答案詳解1套
- 2025年武漢情智學校招聘備考題庫及答案詳解1套
- 2025年通遼一學校招聘37人備考題庫完整參考答案詳解
- 2025年眉山市中醫(yī)醫(yī)院招聘人才的備考題庫及一套答案詳解
- 2025年深圳市深汕特別合作區(qū)引進基層醫(yī)療人才11人備考題庫及完整答案詳解一套
- 2025年深圳市南山區(qū)桃源卓雅幼兒園招聘備考題庫完整答案詳解
- 課題2 水的組成(同步講義)初中化學人教版(2024)九年級上冊 第四單元 自然界的水(解析版)
- 2025年齊齊哈爾市總工會工會社會工作者招聘備考題庫附答案詳解
- 2025年心血管內(nèi)科科研助理招聘備考題庫及完整答案詳解1套
- 2026成方金融信息技術服務有限公司校園招聘5人考試題庫附答案
- 2025年中職計算機應用(計算機網(wǎng)絡基礎)試題及答案
- 車輛租賃服務協(xié)議書
- 2025安徽安慶市公安機關招聘警務輔助人員418人備考筆試題庫及答案解析
- 2024年廣州市南沙區(qū)南沙街道社區(qū)專職招聘考試真題
- 2026年牡丹江大學單招職業(yè)技能考試題庫新版
- MOOC 國際商務-暨南大學 中國大學慕課答案
- 《郵儲業(yè)務介紹》課件
- 醫(yī)療器械臨床評價報告模板
- 污染場地調查評價與修復
- 生物計算機課件
評論
0/150
提交評論