山東省兗州市第一中學(xué)2023學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷(含解析)_第1頁(yè)
山東省兗州市第一中學(xué)2023學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷(含解析)_第2頁(yè)
山東省兗州市第一中學(xué)2023學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷(含解析)_第3頁(yè)
山東省兗州市第一中學(xué)2023學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷(含解析)_第4頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余15頁(yè)可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.把函數(shù)的圖象向右平移個(gè)單位,得到函數(shù)的圖象.給出下列四個(gè)命題①的值域?yàn)棰诘囊粋€(gè)對(duì)稱軸是③的一個(gè)對(duì)稱中心是④存在兩條互相垂直的切線其中正確的命題個(gè)數(shù)是()A.1 B.2 C.3 D.42.函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)橫坐標(biāo)的和為()A. B. C. D.3.已知函數(shù)(其中,,)的圖象關(guān)于點(diǎn)成中心對(duì)稱,且與點(diǎn)相鄰的一個(gè)最低點(diǎn)為,則對(duì)于下列判斷:①直線是函數(shù)圖象的一條對(duì)稱軸;②點(diǎn)是函數(shù)的一個(gè)對(duì)稱中心;③函數(shù)與的圖象的所有交點(diǎn)的橫坐標(biāo)之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③4.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.5.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.46.設(shè)函數(shù),當(dāng)時(shí),,則()A. B. C.1 D.7.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.8.已知函數(shù),,若成立,則的最小值是()A. B. C. D.9.集合的子集的個(gè)數(shù)是()A.2 B.3 C.4 D.810.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.11.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點(diǎn)的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg12.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的焦點(diǎn)坐標(biāo)是_______________,漸近線方程是_______________.14.已知函數(shù),若關(guān)于的方程恰有四個(gè)不同的解,則實(shí)數(shù)的取值范圍是______.15.已知半徑為的圓周上有一定點(diǎn),在圓周上等可能地任意取一點(diǎn)與點(diǎn)連接,則所得弦長(zhǎng)介于與之間的概率為__________.16.已知函數(shù)在上單調(diào)遞增,則實(shí)數(shù)a值范圍為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓:的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,橢圓的離心率是,的面積是.(1)求橢圓的標(biāo)準(zhǔn)方程.(2)直線與橢圓交于,兩點(diǎn)(異于點(diǎn)),若直線與直線的斜率之和為1,證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).18.(12分)如圖,四邊形是邊長(zhǎng)為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.19.(12分)若關(guān)于的方程的兩根都大于2,求實(shí)數(shù)的取值范圍.20.(12分)若函數(shù)為奇函數(shù),且時(shí)有極小值.(1)求實(shí)數(shù)的值與實(shí)數(shù)的取值范圍;(2)若恒成立,求實(shí)數(shù)的取值范圍.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.22.(10分)某中學(xué)準(zhǔn)備組建“文科”興趣特長(zhǎng)社團(tuán),由課外活動(dòng)小組對(duì)高一學(xué)生文科、理科進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為“理科方向”學(xué)生.理科方向文科方向總計(jì)男110女50總計(jì)(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【答案解析】

由圖象變換的原則可得,由可求得值域;利用代入檢驗(yàn)法判斷②③;對(duì)求導(dǎo),并得到導(dǎo)函數(shù)的值域,即可判斷④.【題目詳解】由題,,則向右平移個(gè)單位可得,,的值域?yàn)?①錯(cuò)誤;當(dāng)時(shí),,所以是函數(shù)的一條對(duì)稱軸,②正確;當(dāng)時(shí),,所以的一個(gè)對(duì)稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個(gè).故選:C【答案點(diǎn)睛】本題考查三角函數(shù)的圖像變換,考查代入檢驗(yàn)法判斷余弦型函數(shù)的對(duì)稱軸和對(duì)稱中心,考查導(dǎo)函數(shù)的幾何意義的應(yīng)用.2、B【答案解析】

根據(jù)兩個(gè)函數(shù)相等,求出所有交點(diǎn)的橫坐標(biāo),然后求和即可.【題目詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的橫坐標(biāo)的和,故選B.【答案點(diǎn)睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算的核心素養(yǎng).3、C【答案解析】分析:根據(jù)最低點(diǎn),判斷A=3,根據(jù)對(duì)稱中心與最低點(diǎn)的橫坐標(biāo)求得周期T,再代入最低點(diǎn)可求得解析式為,依次判斷各選項(xiàng)的正確與否.詳解:因?yàn)闉閷?duì)稱中心,且最低點(diǎn)為,所以A=3,且由所以,將帶入得,所以由此可得①錯(cuò)誤,②正確,③當(dāng)時(shí),,所以與有6個(gè)交點(diǎn),設(shè)各個(gè)交點(diǎn)坐標(biāo)依次為,則,所以③正確所以選C點(diǎn)睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過求得的解析式進(jìn)一步研究函數(shù)的性質(zhì),屬于中檔題.4、C【答案解析】

利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【題目詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【答案點(diǎn)睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.5、D【答案解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計(jì)算即可得到所求最小值.【題目詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【答案點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.6、A【答案解析】

由降冪公式,兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【題目詳解】,時(shí),,,∴,由題意,∴.故選:A.【答案點(diǎn)睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.7、D【答案解析】

根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對(duì)稱,排除AB,計(jì)算f1.5≤【題目詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【答案點(diǎn)睛】本題考查了函數(shù)圖像的識(shí)別,確定函數(shù)關(guān)于1,0中心對(duì)稱是解題的關(guān)鍵.8、A【答案解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會(huì)將其中求的最小值問題,通過構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問題,另外通過二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).9、D【答案解析】

先確定集合中元素的個(gè)數(shù),再得子集個(gè)數(shù).【題目詳解】由題意,有三個(gè)元素,其子集有8個(gè).故選:D.【答案點(diǎn)睛】本題考查子集的個(gè)數(shù)問題,含有個(gè)元素的集合其子集有個(gè),其中真子集有個(gè).10、B【答案解析】

由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對(duì)值不等式求得結(jié)果.【題目詳解】由題意知:定義域?yàn)?,,為偶函?shù),當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【答案點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問題;奇偶性的作用是能夠確定對(duì)稱區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進(jìn)而化簡(jiǎn)不等式.11、D【答案解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點(diǎn)的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測(cè)其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測(cè)其體重約為0.85×170﹣85.71=58.79kg,D錯(cuò)誤.故選D.12、D【答案解析】

由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長(zhǎng)為,得,進(jìn)一步求出四面體的體積即可.【題目詳解】解:如圖,

∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時(shí),最小,

設(shè)正方體的棱長(zhǎng)為,則,∴.

取,連接,則共面,在中,設(shè)到的距離為,

設(shè)到平面的距離為,

.

故選D.【答案點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計(jì)算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

通過雙曲線的標(biāo)準(zhǔn)方程,求解,,即可得到所求的結(jié)果.【題目詳解】由雙曲線,可得,,則,所以雙曲線的焦點(diǎn)坐標(biāo)是,漸近線方程為:.故答案為:;.【答案點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬于容易題.14、【答案解析】

設(shè),判斷為偶函數(shù),考慮x>0時(shí),的解析式和零點(diǎn)個(gè)數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,作函數(shù)大致圖象,即可得到的范圍.【題目詳解】設(shè),則在是偶函數(shù),當(dāng)時(shí),,由得,記,,,故函數(shù)在增,而,所以在減,在增,,當(dāng)時(shí),,當(dāng)時(shí),,因此的圖象為因此實(shí)數(shù)的取值范圍是.【答案點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)的個(gè)數(shù)問題,涉及構(gòu)造函數(shù),函數(shù)的奇偶性,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,考查了數(shù)形結(jié)合思想方法,以及化簡(jiǎn)運(yùn)算能力和推理能力,屬于難題.15、【答案解析】在圓上其他位置任取一點(diǎn)B,設(shè)圓半徑為R,其中滿足條件AB弦長(zhǎng)介于與之間的弧長(zhǎng)為?2πR,則AB弦的長(zhǎng)度大于等于半徑長(zhǎng)度的概率P==;故答案為:.16、【答案解析】

由在上恒成立可求解.【題目詳解】,令,∵,∴,又,,從而,令,問題等價(jià)于在時(shí)恒成立,∴,解得.故答案為:.【答案點(diǎn)睛】本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,.【答案解析】

(1)根據(jù)離心率和的面積是得到方程組,計(jì)算得到答案.(2)先排除斜率為0時(shí)的情況,設(shè),,聯(lián)立方程組利用韋達(dá)定理得到,,根據(jù)化簡(jiǎn)得到,代入直線方程得到答案.【題目詳解】(1)由題意可得,解得,,則橢圓的標(biāo)準(zhǔn)方程是.(2)當(dāng)直線的斜率為0時(shí),直線與直線關(guān)于軸對(duì)稱,則直線與直線的斜率之和為零,與題設(shè)條件矛盾,故直線的斜率不為0.設(shè),,直線的方程為聯(lián)立,整理得則,.因?yàn)橹本€與直線的斜率之和為1,所以,所以,將,代入上式,整理得.所以,即,則直線的方程為.故直線恒過定點(diǎn).【答案點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,直線過定點(diǎn)問題,計(jì)算出是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.18、(1)證明見解析(2)【答案解析】

(1)由已知線面垂直得,結(jié)合菱形對(duì)角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,由已知線面垂直知與平面所成角為,這樣可計(jì)算出的長(zhǎng),寫出各點(diǎn)坐標(biāo),求出平面的法向量,由法向量夾角可得二面角.【題目詳解】證明:(1)因?yàn)槠矫?,平面,所?因?yàn)樗倪呅问橇庑危?又因?yàn)?,平面,平面,所以平?解:(2)據(jù)題設(shè)知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,因?yàn)榕c平面所成角為,即,所以又,所以,所以所以設(shè)平面的一個(gè)法向量,則令,則.因?yàn)槠矫妫詾槠矫娴囊粋€(gè)法向量,且所以,.所以二面角的正弦值為.【答案點(diǎn)睛】本題考查線面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標(biāo)系,用空間向量法求空間角,這樣可減少思維量,把問題轉(zhuǎn)化為計(jì)算.19、【答案解析】

先令,根據(jù)題中條件得到,求解,即可得出結(jié)果.【題目詳解】因?yàn)殛P(guān)于的方程的兩根都大于2,令所以有,解得,所以.【答案點(diǎn)睛】本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于??碱}型.20、(1),;(2)【答案解析】

(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實(shí)數(shù)的值;對(duì)函數(shù)進(jìn)行求導(dǎo),,通過導(dǎo)數(shù)求出,若,則恒成立不符合題意,當(dāng),可證明,此時(shí)時(shí)有極小值.(2)可知,進(jìn)而得到,令,通過導(dǎo)數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實(shí)數(shù)的取值范圍.【題目詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡(jiǎn)可得,所以.則,令,則.故當(dāng)時(shí),;當(dāng)時(shí),,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無極值點(diǎn);所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點(diǎn)存在性定理知在區(qū)間上,存在為函數(shù)的零點(diǎn),為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當(dāng)時(shí),,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當(dāng)時(shí),則在上遞增,故.綜上,的取值范圍是.【答案點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對(duì)于恒成立的問題,常轉(zhuǎn)化為求的最小值,使;對(duì)于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論