版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
cosxdx
(2)2(x21)dx22(x2 (3)1x3dx (3)2xdx4 (1)該定積分的幾何意義如右圖所示陰影部分面積的代數(shù)和,且在(22范圍內(nèi)對(duì)稱,所1原式21x12在(1,1范圍內(nèi)關(guān)于軸對(duì)稱,所以等式兩邊相等.(1)1x2dx與1 (2)3x2dx與3 (2)
(lnx)2
(4)0
sinxdx與0
(1)由定積分的比較性可知在(13x2x3由定積分的比較性可知在(34范圍內(nèi)lnx(lnx)2a由定積分的比較性可知在(0范圍sinxx211151(1)1
e-x
5(2)4
(1sin2
(3)
(4)0
sinxdx(1)因?yàn)閑x2在[011,最小值為1e1dx1ex2dx1 e11ex2dx0(2)因?yàn)?sin2x在[,5
22,1 4
ldx4
(1sin2x)dx4
41f1
(1sin2x)dx4fx)fx)
1121
x4(1021x(1x4(109x)21x(1x0x9f(x在(0f(x在[010,最大值是2 100dx11111
dx02dx2ABABsinxADtanxACsinxxtan亦得到:1
sin
0x,從中cosxsinx 2cosxdx
sinxdx
1 1
sinxdx y122(1) xx2 (2)(122
2xx22BC 2(1)2所以原式12
該定積分的幾何意義是以(1,11x方.所以原式1212(1)f
tet
e(2)f(x)e
x3xf(x)
2tet
xf(x)x
(t3x3)sin (1)設(shè)tet2dtf(x)g(e)x2g(x2g(1)令x2f'(x)g'(m)m'x2ex42x(2)設(shè)ln(1t2)dtf(x)g(exg(x)令exf'(x)g'(m)m'g'(x)exln(xe2x)ln(xx2設(shè)et2dtx則f(x)g(x3)g(x)令x3m x12f'(x)g'(m)m'g'(n)n'ex63x212設(shè)(t3x3)sintf(x)g(xf'(x)g'(x)g'(0)
lim
xsin
lim
x1tx0x30 x0x1t
1x
11x21tx1t
0xlntlimx0x
11(xxt
1
t2x
dt
x
(tt x
xx et2 x0xsinx(1) x0x30lim11x0 3
lim x0x20lim
1x2x0x2 21tan2lim1tan2
1sin2tx0x30lim x(
x0x30lim xtanxsinxx0x30lim xx0x30
11t3x0x3 3(4)
x-0
11x21x2 x-0011x2
x0(ln
1
(1sin2t)txx0xx
lim(12x)1
xlnt11x1(xlim1x12xlim1ln
1limxx12x2
2x1 xt
1xt
lim
dt exln(
xlim1lnxet2
e1ex
001
x
x(arctant)2x(x
arctan)2 1x 1x11 0x 1(tt2)et2x2limx
x(tt2)et0xex
(xx2)ex 法則
ex
(12x2 F(x)在[abf(x)F(x)xf(t)dtx1(1)
bfFx)在[ab 設(shè)f(t)dtg(t)1dt ()()()()(bh) 又因?yàn)閒(t0Fx
)')'因?yàn)镕(x)在[ab]F(a)a1deb1debf afbF(b)af(t)dtb又因?yàn)镕(x)在區(qū)間[ab]上連續(xù).所以在區(qū)間[ab內(nèi)緊有一個(gè)實(shí)根.f(x為連續(xù)函數(shù),且存在常數(shù)aex-1xafx求f(x)及常數(shù)a.解:設(shè)f(e)deg(t)ex1xg(aex1xg'(a)g'(x)ff(x)1所以af(t)dtaex1dxxex1
aea1ex1 所以a
xx設(shè)x
(xtf(t)dt1cosx,說明
f(x)dx1 x x
t)(f'Qx0x0x
t)((00x
xt)dt0 即P(x)-P(0)1-Q(x)f(x)20202f(x)dxsin 0 8
e2(ln
113(1) (2)3
(exex
cosx
2x
4
44x1x
22ex2ln
04
(10)x6
tan
(11)6
tan2
(12) 1212(13)0
sin
(15)4
xcosxsinxdx(xsinx)2
333(1)3
8
32 x31 (2)1(exex)dx(exex)1 (3)
e2(ln
2edxe
(lnx)2d(lnx)
1(lnx)3
arcsinxdx
2arcsinxd11 1arcsin22
1221s22221s2
)520 200cosxdx2cosxdxcosxdxsin sinxx 2xdx0xdx2xdx1x221
0
0
41 4
12
2 1arctgx204
2 ex2ln
e21ln
2
dx1xdx
dx
1(e21)2
2e1(e26
36tanxdxln36
1ln26
tan2xdx6
1cos2
ldx
3(sec2x6(333(333 x(12)4(x1)2dx4x2x1dx4121x (x
4lnx11212(13)0
sinxdx
6(sinx)dx06
(sinx606026
21(xcosx)1
(cosx231 0
1sin2xdx
sinxcosxdx0
(cosxsinx)dx4
(sinx(sinx
(cosxsinx)x4024024242124xsin(15)4
xcosxsinxdx2(xsinx)2
(xsin
d(xsinx)
3 311(16)1max{1,x}dxldxxdxx1311
f(x)xt(lt)e2tdtxf(x0解:設(shè)
t(tl)e-2tdef(x)g(xfx)gx)x(x1)e2xx(xfx)在(,0(11)0,在(01f(x在(01,)上單調(diào)遞增,在(01所以當(dāng)x0f(x)x1f(x)設(shè)I1I2
2222
sinxcos21(sinx比較I1,I2,I3的大小
I3
2(sin5x2
cosx I1
21
cos2I2
2(sinxcos2 I 2(sin5x2
cosx cos2 cosxdx2 cosxdx2I3I1
ln 1x2a22a1x2a22a2
(1x2(1x21
33exe x1x1
(9)
3lnxx(13lnxx(1lnx)ln
(11)
sin9 x2
1
x 1x22xx(1)x
0
11cos2
darctan(cosx)021(2)1xln(t22xln3,時(shí)t2x0,時(shí)t2222
1t2xxx12[ln32ln(2e2ex1x1ln xsinxdx xsinxdx21ln 23(4)
1 x331x331x2x3(1x2x3(1x2)2
3(1x2) 03(1x2)12222
x2xx21x21 x338
3
a2
aa2a2
arcsin0a4 xtant3311 4
(sect)2tant dt
dcost1cos21
3d(cost)1
d24
34134
24
341341ln(1cost)
1ln(1cost)1ln(22ln(2
1ln3(2221ln2(8)令exexexe dx
t1te dtlnxx21et2t21ee2ee21令tlnxx3lnx3lnxe 2
dx636
(3t2) 令lnxt1與2x(1lnxx(1lnx)lne1 2
令tsin2x4 2sinxdsin 11sin2xsin
2dsin11sin2sin2xsin2x121221224212sin902(1cos2x)4d02(cos8x4cos66cos44cos2x1)d0x2sec3adxsecatan22x2x24
secatanasec2tan4
cosadasin
3334x11 1 1
arctan2212
2(41ln21 1x2e
1(xx)ex
x
0e(4)e
(lnx)3
e(5)ee
lnx
(6)0
xsin1(7)1
x
2ee
2
1e2x(4x e(x ln(10)ln
x3e
0
xsinx
e2sin(ln 11
1x2arcsin
xe (1)0(x2ex11ex0(e112xdxx0(e12e12ex10(3e12e12(2)0(xx)exdx1(xx)e 12xde0(2xex11ex (2e12ex10(2e12e12(3)=1e1ln(x2x1(x2ln(x1)e1e121x xx(lnx)3eex3lnx1 ee13lnee3(xlnxeex1 e
e(xlnx11xxdx)xlnx11xx [1(11)]e(e 0
(xcosx
0sinxx01121(x2arctanx11
01[(x1
1x22 011[1arctanx12 [ln
(x1(xe2lnx11(x
xe11(9)1(4x21[(4x3)e3x11e2x21(7e232
412
2x01[7e232(e22(10)1
1(5e22ln2x2de21[x2e2
ln2
ln22xe1[ln2eln2
ln2dex221[21[2
00ln
]1[2
21(ln24
xsin(xcosxcosxdx)(xcosx22 e2sinln2
dx
sinlnxd 1sinlnxe221coslnx1 1sinlnxe22coslnxd 1sinlnxe21coslnxe2
1sinlnx1x1(2
sinlnxx
coslnx)e1)1(1)e11
1x2arcsin11
(1)
2arcsinxd(1x2)3 2
(1x2)2arcsin3
(1x2)2(1x2)221x2)dx3 xexe(14)ee2e
lnxdx1 e 12lnxx
e
x2dx1 12lnxx
x2dxe2
4e2e0 dx2
221 2ee11186e111
1
3sin2xln(x1x23
cosx2(1)f(xsin2xlnx12f(x)sin2xln(x1x2f(x)f(x)sin2x[ln(x
1x2)ln(x
x2sin2xln(1x2x2)f(xf(x)在(-3,3)f(x)
(212
12f(x)
212
12f(x)f(x)
212
1
1)f(xf(x在(-1,1) 設(shè)5(5)dx4(4)dx4因?yàn)閒(x)cosxarccosxff(x120cosx1求0(x)dx,其中(xx1解:[0
xdx121
(1x)dx]1201 12120[2
(xx)12求[x]dx,其中[xx5 543213f(xg(x)在(f(x)3x22g(x)dx,g(x)x33x22f f(xg(x1解:令0f(x)dxC(C為常數(shù))則g(x)x33Cx212g(x)dx(1x4Cx3) 4f(x)3x28C2f(x)dx(x38Cx4x)2 816C8Cf(x)g(x)3x24[f(x)g(x)]'6x-3x2x0xx0時(shí)f(xg(x)]minx2時(shí)f(xg(x)]maxx0arcsinarcsin1 1(1) 4
x
4ln(1tanarcsinarcsin1解:(1) 4arcsin1arcsin1x2 424
xxdx1x11x14(2)2
51x14(3)ln21x148f(x)xln(1t)dt(x0)f(xf1 1ln22
x(1x2
exe2
x2x
3
arctanx0x
0(1
xe
n20(1ex)2
0
e解:(1)1ln2(2)4(3)2ln3(4)221ln (nxa
2已知lim
4xe
dx,求常數(shù)axxa a0a1ln20
1 dx11
1 1-0(2-1-
(4)5 5 51-xx2(5)e (6) (7)arccos1-xx21 1 1(1)(2)(3)23223(1)yx2與y2x2 (2)y1與yx,x2x(3)yx2,4yx2,y1 (4)yx3,y2x(5)yex,yex與x (6)yx2,yx,y2x(7)yxlnx與yx,y0 (8)yx(x1)(x2),y0ysinx,ycosx,x0,x2 (10)y212(x3),y212(x3)(1)122(x1x3) 3(2)s2(x1 1 (xln 3ln2y(3)y
ty212t041t3 31 2
20 12022
(xx
x)(12)(2(5)exex0ee11x21(x21x3(6) 6 1x211x2e1x2(lnx1) 0 1 211(e21)[1e211(1 1e2 1(x33x22x)dx2(x33x20(14
x2)0
(14
x21111[(484)(11 44(sinxcos)4(sinx022(10)1(1y336y)3 yx24x3及其在點(diǎn)(03和點(diǎn)(30)gx24x3y1y1023-t(0,3處切線的斜率k12x4x04y4xt(3,0處切線的斜率k22x4x32y2x1S0
4x3(x24x3)dx
2x6(x24x3)104
x26dx
(x26xylnxxylnxy1x二曲線的交點(diǎn)為(eeyy01x從而面積S11xdxe1xln0 111x2111x2eelne e 11e2xlnxe(ee 1e(e)(e1)1e2ylnx上的點(diǎn)(e,1)xylnxyex
1x軸的交點(diǎn)為
e2e
,0)從而面eSe
lnxdx
ee
(exe2 1y4xx2、yyb(b0y4xx2yb所圍圖形面積的一半,求b的值.44解:設(shè)yb,與拋物線的兩個(gè)交點(diǎn)的x軸坐標(biāo)是a12 ,a44
(b4x
s1
4b(b4xx241x32x2bx2 1x32x2bx4 1a32a2
1
23 s112所以1a32a2
1a32a23 3 14[(44b)2(44b)]3b3yx2x[01]間t取何值時(shí),圖6-29S1S2解vyv2ylnx(1xe)ss1v2
圖6-
t(t2x20(t2x1x3)
s1(x2t2t11 (xt
1t22 s4t3t2 s'4t22t2t(2t所以s
(0
1單調(diào)遞減,在
,
s1s2當(dāng)t0s1t1s s1s e y=-求由拋物線y2)2x1y03xxy24yxf(y,則fy2yy03的切線斜率為k2x2y4s3y24y52y03y26y01y36
y29y092727(1)xya2y0xax2a(a0x
ysinx0x
x2
y0xyyx3xy2xyex2x0x1yy5xy6xxx2y24x24y1y0xycosx,x0,x,y2a(1)va(
2a1aa41x12xvx20
sin22020(sinx
2cos200
(1sin20
ldx0
sin2因?yàn)?0x
sin2xdx2所以v4yvyv2v2y12v1ysinx(0xy2 1v2
1 1v1(arcsinx)210134vyv2v1vv2v2xy2(0x1xv1yx2(0x1xv21xdx1x21 v1x6dx1x7 所以vv2v15vxee(lnx)21[x(lnx)2eexx2lnx1 ee[e2(xlnxeex1 [e2(e(e(evyv2v2是以e1yv1ylnx(1xeyv2
v1(ey)21011e201e2y e2 所以vv2v1(e22 v1ldy
lne1[ylny
1ydy]1e1[e1(1e12e156xx11x2xvv2v2xy6(1x5xv1y5(1x5xx5v5(6x)2 v55 ()5 155(x212x1
25
1dx(13
1212
36x)1
1x1241x所以vv2v1643
v1x24y1)(2x2)x2 2v1 22(1x2x4 2(x
1x3
1x5232
16 v22v242332所以v128(8)ycosxx0xy0yy1π0x-y12V20xcosx 20
xcosxdx22
xcos2(xsinxcos2
2(xsinxcosx)220yx2(x0)Ax1AAxx設(shè)切點(diǎn)A(x0y0直線斜率k2x0直線方程:y2x0(xx0y0x軸交點(diǎn)為
y000
xdx
y
(2x0x2x0y0)dx
且有y0x0解得x0y01從而A(1,1y2x1x軸交點(diǎn)1021V22
xx2dx2
x(x2(2xA0yx22xy0,x1,x3S解ss12(x22x)dx3(x2 (x21x3)2(1x3x2 2 v(v4v3)(v2v43y3v2yx22x(1x2)y軸(x軸的下方)v432
v1v3
同理得:v 31333
1y)2
1710(y1
1 t則yt1y3ty0時(shí)t所以原式1196v(v4v3)(v2v1))x軸旋轉(zhuǎn)一周產(chǎn)生的兩個(gè)旋轉(zhuǎn)體體積之比.解:如右圖所示,即要證S1S2y0y0B23ya(x1)(x310a(x1)(x3)dx3a(x1)(x 左邊1ax24ax01ax32ax2 1a2a3a4 右邊3(ax24ax11ax32ax23ax 27a18a9a1a2a 43(2)31V12xa(x1)(x3)dxV220xa(x1)(x3)31V1 ylnxxxy軸yy101e exx軸旋轉(zhuǎn)所得的體積為VxVx1(1x)2dxe(1xlnx)20 1(223y軸旋轉(zhuǎn)所得的體積為V2Vy21x1xdx2ex(1xln
e ) e 從而Vx(2
e),Vy yax(0a1yx2所圍圖形的面積為S1x1S2試確定a的值,使S1S2S1a(axx20S21(x2aS1S2a(axx2)dx1(x2 1ax21x3a1x31ax2 0 aS1S2求得可的:a21a2
0(S1S2min22622V
(axx2)2dx
(x2ax)21(axx2)2021yy0a12000萬元建成一條生產(chǎn)線,投產(chǎn)后,在t c(t)52t3(百萬元/年R(t)17t3(百萬元/年R'(t)-c'(t)23t3可解得tR'(t)-C'(t)-
2t33故而t8
(123t3)dt1001840(e06解:總計(jì)利息為(380e06501064.75萬元MC2x(萬元/臺(tái))x表示產(chǎn)量,固定成本C022(萬元,邊際收益MR204x(萬元/臺(tái)求:XXC2200(2XX 2x2
xR0(20x20x-2x
2 x2C20x
218x3x22MR2x204xx6'18-"3x6x6此時(shí)324824 (A.A.
B.1
C.
D.1
1xlne
0f(x是[ab上的連續(xù)函數(shù),則下列論斷不正確的是xaf(x)dxf(xxbxf(x)dx是f(xbbaf(x)dxf(xbf(x在[abf(xF(x)f(x的原函數(shù),則f(xF(x)f(xF(x)f(xF(x)f(xF(x)設(shè)在區(qū)間[abf(x)0fx0f"(x)0則下列不等式成立的是(ba)f(a)bf(x)dx(ba)f(a)f (ba)f(b)bf(x)dx(ba)f(a)f (ba)f(a)f(b)bf(x)dx(ba)f (ba)f(a)f(b)bf(x)dx(ba)f xxf(x在(內(nèi)為連續(xù)可導(dǎo)的奇函數(shù),則下列函數(shù)中為奇函數(shù)的是xxsinf'
0sinxf
0f(sin
xxxf(x在(x0F(x)x0f(t)dt,則下列結(jié)論正確(CF"(x)不存 B.F"(x)存在且F"(x)C.F"(x)存在且F"(x)2f D.F"(x)存在且F"(x)f(xf(0)0f00x0F(x)x(sin2xsin2t)f0xk為同階無窮的,則k f(x)
xetdx
et2dt1f(x為(B. A.正常 F(x)x2esinxsinxdx則F(x)為x正常 解:1(1)AA2dxarctanx
arctan211 BlnxCln(lnxDx1baf(x)dxf(xbf(x)0,f'(x)0,f(x)f(x(ba)f(a)bf(x)dx(ba)f(a)f xF(x0sinxf F(x)0sin(x)f(t)dtsinx0f由(3)A知
f(t)dt0fxxxF(x)sinx0f(t)dtFxsin2xf(t)dtxsin2tflimF(x)lim x0 lim
0fxkx
lim
f lim2
f kk
kxx2
k(k2
k(k2)(kf(x)
etdt0
etxxetdt
xet2dt12 2x2x0f設(shè)f(x)具有一階連續(xù)導(dǎo)數(shù),且f(0)0,f'(0)0,求 x0x2
f0x2
fxf
lim x02x
2xf(x2)f(t)dtx2f0
f'(x2)3f(x)
f
f'(x0 f'(x 4f'(x2
x0 x04f求證方lnxx
1cos2xdx在(0) 解:證明f(xlnxx
1 f'(x)1 x(0e)時(shí)f'(xx(e時(shí)f'(xx0f(x) 2f(e)2得
1cos2xdx
2cosx 0f(xf(0)0F(x)
xtn1f(xntn)dtlimF(x) x0limF(x)
1nxn1f(xnn
f(xnx0
x0 nxn1f'(xn
f'(xn
f'
2n2
x0xu
2xx
2xarctan(1x1cosxxsin
x02sinxx
2arctan(1x2)2
22 f(x連續(xù),且xtf(2xt)dt1arctanx2;已知f(11,求2f(x)dx的值 解:令2xtx
t2x 2x(2xu)f(u)du
f(u)du
f f(u)du2xf(2x)2xf(x)2xf(2x)xfxx1則22f(u)duf(1)
xf(u)duxf(x)
1 2f(x)dx1x(11) f(x在[0f(0)0n1n0F(x) 0
f(t)dt
xx在[0上連續(xù)且單調(diào)不減(其中n0解:證明limF(x)lim1xtnf(t)dtlimxnf(x)
x0x
x0F(x)在[1]F'(x) xtnf(t)dtxn1fx21
1arcsin(1(1)11ex1
(2) 2x2x33(15x2)1(15x2)13
110(1)0
xdx
x111 0111 xedx1
01 01311ex 3xxdx x01 1(2)12
arcsin(1x)dx11
1 2arcsin(1x)12(6)72x (15tan2t)1(15tan2t)1tan20
(15tan2)
1
d2sin 14sin2
2
1(2sinxsin
1arctan(2sint 60 603sin2t3 6
dt6
1cos2t21(3
3) 4 f(x在[02f(xf(2x)0x f (2xx2)dx0f(x)f(22f(x)(2x
f(2I
f(x)f(2x)dx
x(2f(2x)f2I2f(x)f(2x)(2xx20f(x)f(222xx2dx48 I3f(x)xsintdt,計(jì)算f(x)dx0 sintdtdxsintdtcost110 ef(x)axt(2at)dt,求af(x)dxe adtatet aet(2at)(a01ea2ae(ta)2d(t212
2(ta)20
12
f(xf(x
xf(xt)etdt0解:令xt原式可化為xf(u)exudusin0exxf(u)eudusin0exxf(u)euduexf(x)ex0cosxf(x)exxf0sinxf'(x)exxf(u)euduexf(x)e0sinxf'(x)cosxf'(x)sinxcosxf(x)cosxsin(1)3
1cos2
(xsinx
11
(2)2
1
sin4
xcosxsincosxsin4(1)
1cos2
ln11
cos23
ln1xdx01x cos23
xsin33
13333xsec ln333342ln(23)(2)2
1
sin4xdx2
sin4xdx2
11
sin420
sin4xdx2
11
sin42sin4xdx
sin2x(1cos2
1
1 cos2x)
1
(1cos2x)dx1
(1cos22 412
1sin2x2 0
1 2422
(14
14
1sin4x2 0
3又e 又e2 12
sin4xdx2
11
sin43e e(3) 4
cosxdx4
xe2sinx e2sinxdx2 cosxcosx
xe2x2(e
1
e24
448(e8e8 3原積分48e8e83f(xaxb
x0,求常數(shù)a,b1f(x)dx解:f(xaxb44ab
2xab3f(x)dx3
a
3bx3
43x 1 4a2b43
328ab43
31)
24333
3224a2b時(shí),即a1,b22
1f(x)dxf(x)xet2tdt,求1(x1)2f(x)dx 1et22tdt1(x1)2 0
061e1e(t1)2(t1)2d(t61
exsin5
esin(1)
2
(2)
sin
cosx01cos (1)xsin3 (u)sin3I01cos2xdx 1cos2u
sin32
du
usin3201cos 01cos
sin32
dx
xsin3201cos 01cossin3
xsin3
x2I01cos2xdx01cos2xdx01cos2xsin3
sin201cos2xdx01cos2d2(1cos2 1cos2
d2arctan(cosx)cosx2 I2I2(2)x2e e ecost
0sintdt0
ecosecosx
sinx1
dx2 fx)arctan(x-1)2f(0)0.求1f(x)dx0Ixf(x)11xf f(L)1xarctan(x1)20f(l)1f'(x)dxf(0)1arctan(x1)2 I1(1x)arctan(x1)2dx1(x1)arcsin(x1)2 11arctan(x1)2d(x2令uxI1121 11 uarctan 02
112
1ln1u21
1ln4
(x1)4x2(x1)4x20
arctanx
1ex
e3(1x)(1x)2e
cosbxdx(a0 x1(1)
2b0(1x)(1xx2
b0(1
23x2x2b(lnxb(lnx1
1bd(x2x
1b
6 (xx2(xx2x2x13
x3
20(x1)22
32b
(6
239令secx
sec 2(x1)4(x1)2(x1)4(x1)2132cos2d3
2(1sin2)d3sin21sin3
23233 23x
dtanb
3(2tan2t)b
arctanbtsec23
dtant
tcostdtan
sec
b
(tsintarctanbcost1
b1eexe3exlim1
x
11(eee
e2 1()e2
climeaxcceaxcosbxdx1eaxcosbxcbceaxsin1
b
0ac
ca cosbx0a2
sinbx0a20
ceaxcosbxdx1(1eaxcosbxcbeaxsinbx 1
0 I
a 2
cosbxc0
b2
sinbxca a2
(1)0
(2)0
ln1x2
(1)令tx則
lnsinxdx0
lnsin(x
)dx
2lnsinxdx
lncosxdx2A0
(lnsin2xlnln21lnsin 2 1 2
2
2
ln212 2lnsinxdxAln2 (2)同2lncosxdxAln2 1 01111
11
limx
x(1
(1x2
1111
1
2
0
1x2limxlimx
1
21
11111x1lim
1
1
1x 1
1x1xx1x 1 1 1 0ln(1x)dx0ln(11ln(1x)dx2lntdttlnt22dt2ln2 1ln(1x)dx1lntdttlnt11dt 1又limtlntlimlntlim t
t0t
t011
1
dx2ln2112(1lnyx23x2V21x(x1)(x2)222xx23x21 8
111 yx21上的一點(diǎn),使該點(diǎn)處的切線與所給曲線及兩坐標(biāo)軸所圍S01(x21)dx(1x3x)1110設(shè)切點(diǎn)(x01x02
直線l:y2x0(xx01x022x0x1S11(1x02)(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 熱線服務(wù)合同范本
- 蒙牛捐贈(zèng)協(xié)議書
- 融資協(xié)合同范本
- 視頻項(xiàng)目協(xié)議書
- 認(rèn)購協(xié)議換合同
- 設(shè)施維護(hù)協(xié)議書
- 試工實(shí)習(xí)協(xié)議書
- 請(qǐng)人幫忙協(xié)議書
- 工人砸墻合同范本
- 恒大仲裁協(xié)議書
- 2025天津大學(xué)管理崗位集中招聘15人參考筆試試題及答案解析
- 船舶融資租賃合同
- JT-T-1221-2018跨座式單軌軌道橋梁維護(hù)與更新技術(shù)規(guī)范
- 24春國家開放大學(xué)《知識(shí)產(chǎn)權(quán)法》形考任務(wù)1-4參考答案
- 倉儲(chǔ)管理教學(xué)課件
- DLT1249-2013 架空輸電線路運(yùn)行狀態(tài)評(píng)估技術(shù)導(dǎo)則
- 國家開放大學(xué)化工節(jié)能課程-復(fù)習(xí)資料期末復(fù)習(xí)題
- HXD3D機(jī)車總體介紹
- 教科版廣州小學(xué)英語四年級(jí)上冊(cè) Module 7 單元測試卷含答案
- 2023年印江縣人民醫(yī)院緊缺醫(yī)學(xué)專業(yè)人才招聘考試歷年高頻考點(diǎn)試題含答案解析
- 基于邏輯經(jīng)驗(yàn)主義對(duì)命題的分析
評(píng)論
0/150
提交評(píng)論