2023學(xué)年寧夏石嘴山市平羅縣中考數(shù)學(xué)最后一模試卷含答案解析_第1頁
2023學(xué)年寧夏石嘴山市平羅縣中考數(shù)學(xué)最后一模試卷含答案解析_第2頁
2023學(xué)年寧夏石嘴山市平羅縣中考數(shù)學(xué)最后一模試卷含答案解析_第3頁
免費(fèi)預(yù)覽已結(jié)束,剩余14頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023學(xué)年寧夏石嘴山市平羅縣中考數(shù)學(xué)最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在測試卷卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或12.已知圓錐的側(cè)面積為10πcm2,側(cè)面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm3.下列各數(shù)中,相反數(shù)等于本身的數(shù)是()A.–1 B.0 C.1 D.24.實數(shù)a,b,c在數(shù)軸上對應(yīng)點的位置大致如圖所示,O為原點,則下列關(guān)系式正確的是()A.a(chǎn)﹣c<b﹣c B.|a﹣b|=a﹣b C.a(chǎn)c>bc D.﹣b<﹣c5.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結(jié)論的個數(shù)是()A.4 B.3 C.2 D.16.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對7.如果一個正多邊形內(nèi)角和等于1080°,那么這個正多邊形的每一個外角等于()A. B. C. D.8.﹣的絕對值是()A.﹣ B. C.﹣2 D.29.點P(4,﹣3)關(guān)于原點對稱的點所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限10.如圖,一張半徑為的圓形紙片在邊長為的正方形內(nèi)任意移動,則在該正方形內(nèi),這張圓形紙片“能接觸到的部分”的面積是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,小紅將一個正方形紙片剪去一個寬為4cm的長條后,再從剩下的長方形紙片上剪去一個寬為5cm的長條,且剪下的兩個長條的面積相等.問這個正方形的邊長應(yīng)為多少厘米?設(shè)正方形邊長為xcm,則可列方程為_____.12.如圖,在一次數(shù)學(xué)活動課上,小明用18個棱長為1的正方體積木搭成一個幾何體,然后他請小亮用其他棱長為1的正方體積木在旁邊再搭一個幾何體,使小亮所搭幾何體恰好和小明所搭幾何體拼成一個無空隙的大長方體(不改變小明所搭幾何體的形狀).請從下面的A、B兩題中任選一題作答,我選擇__________.A、按照小明的要求搭幾何體,小亮至少需要__________個正方體積木.B、按照小明的要求,小亮所搭幾何體的表面積最小為__________.13.已知線段AB=2cm,點C在線段AB上,且AC2=BC·AB,則AC的長___________cm.14.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結(jié)論的個數(shù)是______.15.若3,a,4,5的眾數(shù)是4,則這組數(shù)據(jù)的平均數(shù)是_____.16.如圖,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.17.如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=____°.三、解答題(共7小題,滿分69分)18.(10分)如圖,小明今年國慶節(jié)到青城山游玩,乘坐纜車,當(dāng)?shù)巧嚼|車的吊箱經(jīng)過點A到達(dá)點B時,它經(jīng)過了200m,纜車行駛的路線與水平夾角∠α=16°,當(dāng)纜車?yán)^續(xù)由點B到達(dá)點D時,它又走過了200m,纜車由點B到點D的行駛路線與水平面夾角∠β=42°,求纜車從點A到點D垂直上升的距離.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)19.(5分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當(dāng)在點A處放置標(biāo)桿時,李明測得直立的標(biāo)桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處放置同一個標(biāo)桿,測得直立標(biāo)桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標(biāo)桿直立時的高為1.8m,求路燈的高CD的長.20.(8分)計算:2tan45°-(-)o-21.(10分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當(dāng)時,請猜想的值(請直接寫出結(jié)論).22.(10分)某生姜種植基地計劃種植A,B兩種生姜30畝.已知A,B兩種生姜的年產(chǎn)量分別為2000千克/畝、2500千克/畝,收購單價分別是8元/千克、7元/千克.(1)若該基地收獲兩種生姜的年總產(chǎn)量為68000千克,求A,B兩種生姜各種多少畝?(2)若要求種植A種生姜的畝數(shù)不少于B種的一半,那么種植A,B兩種生姜各多少畝時,全部收購該基地生姜的年總收入最多?最多是多少元?23.(12分)鄂州某個體商戶購進(jìn)某種電子產(chǎn)品的進(jìn)價是50元/個,根據(jù)市場調(diào)研發(fā)現(xiàn)售價是80元/個時,每周可賣出160個,若銷售單價每個降低2元,則每周可多賣出20個.設(shè)銷售價格每個降低x元(x為偶數(shù)),每周銷售為y個.(1)直接寫出銷售量y個與降價x元之間的函數(shù)關(guān)系式;(2)設(shè)商戶每周獲得的利潤為W元,當(dāng)銷售單價定為多少元時,每周銷售利潤最大,最大利潤是多少元?(3)若商戶計劃下周利潤不低于5200元的情況下,他至少要準(zhǔn)備多少元進(jìn)貨成本?24.(14分)如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結(jié)果都保留根號).

2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【答案解析】

當(dāng)k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當(dāng)k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【題目詳解】當(dāng)k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當(dāng)k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【答案點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關(guān)鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.2、C【答案解析】

圓錐的側(cè)面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【題目詳解】設(shè)母線長為R,則圓錐的側(cè)面積==10π,∴R=10cm,故選C.【答案點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關(guān)鍵.3、B【答案解析】

根據(jù)相反數(shù)的意義,只有符號不同的數(shù)為相反數(shù).【題目詳解】解:相反數(shù)等于本身的數(shù)是1.故選B.【答案點睛】本題考查了相反數(shù)的意義.注意掌握只有符號不同的數(shù)為相反數(shù),1的相反數(shù)是1.4、A【答案解析】

根據(jù)數(shù)軸上點的位置確定出a,b,c的范圍,判斷即可.【題目詳解】由數(shù)軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【答案點睛】考查了實數(shù)與數(shù)軸,弄清數(shù)軸上點表示的數(shù)是解本題的關(guān)鍵.5、B【答案解析】測試卷分析:由拋物線開口方向得a<0,由拋物線的對稱軸位置可得b>0,由拋物線與y軸的交點位置可得c>0,則可對①進(jìn)行判斷;根據(jù)拋物線與x軸的交點個數(shù)得到b2﹣4ac>0,加上a<0,則可對②進(jìn)行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對③進(jìn)行判斷;設(shè)A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據(jù)拋物線與x軸的交點問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數(shù)的關(guān)系得到x1?x2=,于是OA?OB=﹣,則可對④進(jìn)行判斷.解:∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側(cè),∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,而a<0,∴<0,所以②錯誤;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正確;設(shè)A(x1,0),B(x2,0),∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=﹣,所以④正確.故選B.考點:二次函數(shù)圖象與系數(shù)的關(guān)系.6、B【答案解析】

解方程得:x=5或x=1.當(dāng)x=1時,3+4=1,不能組成三角形;當(dāng)x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.7、A【答案解析】

首先設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,即可求得n=8,再由多邊形的外角和等于360°,即可求得答案.【題目詳解】設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,解得:n=8,∴這個正多邊形的每一個外角等于:360°÷8=45°.故選A.【答案點睛】此題考查了多邊形的內(nèi)角和與外角和的知識.注意掌握多邊形內(nèi)角和定理:(n-2)?180°,外角和等于360°.8、B【答案解析】

根據(jù)求絕對值的法則,直接計算即可解答.【題目詳解】,故選:B.【答案點睛】本題主要考查求絕對值的法則,掌握負(fù)數(shù)的絕對值等于它的相反數(shù),是解題的關(guān)鍵.9、C【答案解析】

由題意得點P的坐標(biāo)為(﹣4,3),根據(jù)象限內(nèi)點的符號特點可得點P1的所在象限.【題目詳解】∵設(shè)P(4,﹣3)關(guān)于原點的對稱點是點P1,∴點P1的坐標(biāo)為(﹣4,3),∴點P1在第二象限.故選C【答案點睛】本題主要考查了兩點關(guān)于原點對稱,這兩點的橫縱坐標(biāo)均互為相反數(shù);符號為(﹣,+)的點在第二象限.10、C【答案解析】

這張圓形紙片減去“不能接觸到的部分”的面積是就是這張圓形紙片“能接觸到的部分”的面積.【題目詳解】解:如圖:∵正方形的面積是:4×4=16;扇形BAO的面積是:,∴則這張圓形紙片“不能接觸到的部分”的面積是4×1-4×=4-π,∴這張圓形紙片“能接觸到的部分”的面積是16-(4-π)=12+π,故選C.【答案點睛】本題主要考查了正方形和扇形的面積的計算公式,正確記憶公式是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、4x=5(x-4)【答案解析】按照面積作為等量關(guān)系列方程有4x=5(x﹣4).12、A,18,1【答案解析】

A、首先確定小明所搭幾何體所需的正方體的個數(shù),然后確定兩人共搭建幾何體所需小立方體的數(shù)量,求差即可;

B、分別得到前后面,上下面,左右面的面積,相加即可求解.【題目詳解】A、∵小亮所搭幾何體恰好可以和小明所搭幾何體拼成一個無縫隙的大長方體,

∴該長方體需要小立方體4×32=36個,

∵小明用18個邊長為1的小正方體搭成了一個幾何體,

∴小亮至少還需36-18=18個小立方體,

B、表面積為:2×(8+8+7)=1.

故答案是:A,18,1.【答案點睛】考查了由三視圖判斷幾何體的知識,能夠確定兩人所搭幾何體的形狀是解答本題的關(guān)鍵.13、【答案解析】

設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB列方程求解即可.【題目詳解】解:設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【答案點睛】本題考查了黃金分割的應(yīng)用,關(guān)鍵是明確黃金分割所涉及的線段的比.14、①②③④.【答案解析】

由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;

證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;

由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;

證出△ACD∽△FEQ,得出對應(yīng)邊成比例,得出④正確.【題目詳解】解:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+∠FAG=90°,

∵FG⊥CA,

∴∠GAF+∠AFG=90°,

∴∠CAD=∠AFG,

在△FGA和△ACD中,,

∴△FGA≌△ACD(AAS),

∴AC=FG,①正確;

∵BC=AC,

∴FG=BC,

∵∠ACB=90°,F(xiàn)G⊥CA,

∴FG∥BC,

∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;

∵CA=CB,∠C=∠CBF=90°,

∴∠ABC=∠ABF=45°,③正確;

∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,

∴△ACD∽△FEQ,

∴AC:AD=FE:FQ,

∴AD?FE=AD2=FQ?AC,④正確;

故答案為①②③④.【答案點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、矩形的判定與性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等和三角形相似是解決問題的關(guān)鍵.15、4【答案解析】測試卷分析:先根據(jù)眾數(shù)的定義求出a的值,再根據(jù)平均數(shù)的定義列出算式,再進(jìn)行計算即可.測試卷解析:∵3,a,4,5的眾數(shù)是4,∴a=4,∴這組數(shù)據(jù)的平均數(shù)是(3+4+4+5)÷4=4.考點:1.算術(shù)平均數(shù);2.眾數(shù).16、3:2;【答案解析】

由AG//BC可得△AFG與△BFD相似,△AEG與△CED相似,根據(jù)相似比求解.【題目詳解】假設(shè):AF=3x,BF=5x,∵△AFG與△BFD相似∴AG=3y,BD=5y

由題意BC:CD=3:2則CD=2y

∵△AEG與△CED相似∴AE:EC=AG:DC=3:2.【答案點睛】本題考查的是相似三角形,熟練掌握相似三角形的性質(zhì)是解題的關(guān)鍵.17、50【答案解析】測試卷分析:連結(jié)EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠A+∠BCD=180°,根據(jù)對頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內(nèi)角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內(nèi)角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.測試卷解析:連結(jié)EF,如圖,∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考點:圓內(nèi)接四邊形的性質(zhì).三、解答題(共7小題,滿分69分)18、纜車垂直上升了186m.【答案解析】

在Rt中,米,在Rt中,即可求出纜車從點A到點D垂直上升的距離.【題目詳解】解:在Rt中,斜邊AB=200米,∠α=16°,(m),在Rt中,斜邊BD=200米,∠β=42°,因此纜車垂直上升的距離應(yīng)該是BC+DF=186(米).答:纜車垂直上升了186米.【答案點睛】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,銳角三角函數(shù)的定義,結(jié)合圖形理解題意是解決問題的關(guān)鍵.19、路燈高CD為5.1米.【答案解析】

根據(jù)AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對應(yīng)邊的比相等列出比例式求解即可.【題目詳解】設(shè)CD長為x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即,解得:x=5.1.經(jīng)檢驗,x=5.1是原方程的解,∴路燈高CD為5.1米.【答案點睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是根據(jù)已知條件得到平行線,從而證得相似三角形.20、2-【答案解析】

先求三角函數(shù),再根據(jù)實數(shù)混合運(yùn)算法計算.【題目詳解】解:原式=2×1-1-=1+1-=2-【答案點睛】此題重點考察學(xué)生對三角函數(shù)值的應(yīng)用,掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.21、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【答案解析】測試卷分析:(1)①過點E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設(shè)AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設(shè)AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.測試卷解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設(shè)AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點F是AB的中點.(2)△EFC是等腰直角三角形.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設(shè)AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM(ASA),∴AM=FM.設(shè)AM=x,則AF=2x,DN=x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考點:四邊形綜合題.22、(1)種植A種生姜14畝,種植B種生姜16畝;(2)種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【答案解析】測試卷分析:(1)設(shè)該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù):A種生姜的產(chǎn)量+B種生姜的產(chǎn)量=總產(chǎn)量,列方程求解;(2)設(shè)A種生姜x畝,根據(jù)A種生姜的畝數(shù)不少于B種的一半,列不等式求x的取值范圍,再根據(jù)(1)的等量關(guān)系列出函數(shù)關(guān)系式,在x的取值范圍內(nèi)求總產(chǎn)量的最大值.測試卷解析:(1)設(shè)該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù)題意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:種植A種生姜14畝,種植B種生姜16畝;(2)由題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論