版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年貴州省貴陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.設(shè)z=tan(xy),則等于()A.A.
B.
C.
D.
3.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直
4.
5.
A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散
6.∫1+∞e-xdx=()
A.-eB.-e-1
C.e-1
D.e
7.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)
8.A.A.
B.
C.
D.
9.
10.
A.
B.
C.
D.
11.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
12.微分方程y''-2y=ex的特解形式應(yīng)設(shè)為()。A.y*=Aex
B.y*=Axex
C.y*=2ex
D.y*=ex
13.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無(wú)水平漸近線,又無(wú)鉛直漸近線
14.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
15.
16.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
17.設(shè)f(x)=sin2x,則f(0)=()
A.-2B.-1C.0D.2
18.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
19.
20.A.A.
B.0
C.
D.1
二、填空題(20題)21.
22.
23.
24.
25.
26.
27.
28.設(shè)y=x+ex,則y'______.
29.
30.
31.
32.
33.
34.
35.設(shè),其中f(x)為連續(xù)函數(shù),則f(x)=______.
36.∫(x2-1)dx=________。
37.曲線y=x3—6x的拐點(diǎn)坐標(biāo)為_(kāi)_______.
38.
39.
40.
三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
43.證明:
44.
45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
46.
47.求微分方程y"-4y'+4y=e-2x的通解.
48.
49.求微分方程的通解.
50.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
52.
53.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
54.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
56.
57.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
58.
59.求曲線在點(diǎn)(1,3)處的切線方程.
60.
四、解答題(10題)61.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.
62.在曲線上求一點(diǎn)M(x,y),使圖9-1中陰影部分面積S1,S2之和S1+S2最?。?/p>
63.
64.
65.
66.
67.
68.
69.
70.將展開(kāi)為x的冪級(jí)數(shù).
五、高等數(shù)學(xué)(0題)71.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定
六、解答題(0題)72.
參考答案
1.A解析:
2.B本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.
由于z=tan(xy),因此
可知應(yīng)選A.
3.C本題考查的知識(shí)點(diǎn)為兩平面的位置關(guān)系.
由于平面π1,π2的法向量分別為
可知n1⊥n2,從而π1⊥π2.應(yīng)選C.
4.D
5.C解析:
6.C
7.C本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).
由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.
8.D
9.B
10.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
11.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
12.A由方程知,其特征方程為,r2-2=0,有兩個(gè)特征根r=±.又自由項(xiàng)f(x)=ex,λ=1不是特征根,故特解y*可設(shè)為Aex.
13.A
14.C
15.A
16.C
17.D由f(c)=sin2x可得f"(x)=cos2x(2x)"=2cos2x,f"(0)=2cos0=2,故選D。
18.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
19.D
20.D本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.
可知應(yīng)選D.
21.0
22.ee解析:
23.
24.
25.e-2本題考查了函數(shù)的極限的知識(shí)點(diǎn),
26.ln(1+x)本題考查的知識(shí)點(diǎn)為可變上限積分求導(dǎo).
27.+∞(發(fā)散)+∞(發(fā)散)
28.1+ex本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
y'=(x+ex)'=x'+(ex)'=1+ex.
29.
解析:
30.
31.
32.(02)(0,2)解析:
33.2yex+x
34.2
35.2e2x本題考查的知識(shí)點(diǎn)為可變上限積分求導(dǎo).
由于f(x)為連續(xù)函數(shù),因此可對(duì)所給表達(dá)式兩端關(guān)于x求導(dǎo).
36.
37.(0,0).
本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的-般步驟,只需
38.
39.
解析:本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.
40.
41.由等價(jià)無(wú)窮小量的定義可知
42.由二重積分物理意義知
43.
44.由一階線性微分方程通解公式有
45.函數(shù)的定義域?yàn)?/p>
注意
46.
47.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
48.
49.
50.
51.
列表:
說(shuō)明
52.
53.
54.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
55.
56.
則
57.
58.
59.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
60.
61.
注:本題關(guān)鍵是確定積分區(qū)間,曲線為y2=(x-1)3.由y2≥0知x-1≥0即x≥1,又與直線x=2所圍成的圖形,所以積分區(qū)間為[1,2].
62.
63.
64.
65.
66.
67.
68.
69.
70.
;本題考查的知識(shí)點(diǎn)為將初等函數(shù)展開(kāi)為x的冪級(jí)數(shù).
如果題目中沒(méi)有限定展開(kāi)方法,一律要利用間接展開(kāi)法.這要求考生記住幾個(gè)標(biāo)準(zhǔn)展開(kāi)式:,ex,sinx,cosx,ln(1+x)對(duì)于x的冪級(jí)數(shù)展開(kāi)式.
71.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時(shí),f(x)可能大于0也可能小于0。
72.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.
積分區(qū)域D如圖2—1所示.
解法1利用極坐標(biāo)系.
D可以表示為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標(biāo)志物在藥物臨床試驗(yàn)中的藥物研發(fā)策略-1
- 深度解析(2026)《GBT 20484-2017冷空氣等級(jí)》
- 高效備戰(zhàn)元數(shù)據(jù)標(biāo)注員面試題庫(kù)及答案
- 審計(jì)專員招聘面試題庫(kù)及答案解析
- 測(cè)試開(kāi)發(fā)工程師面試技巧與案例分析含答案
- 寧波梅山新區(qū)經(jīng)濟(jì)發(fā)展局工作人員績(jī)效考核含答案
- 財(cái)務(wù)分析師面試全攻略與問(wèn)題解析
- 深度解析(2026)《GBT 19346.2-2017非晶納米晶合金測(cè)試方法 第2部分:帶材疊片系數(shù)》
- 深度解析(2026)《GBT 19247.2-2003印制板組裝 第2部分 分規(guī)范 表面安裝焊接組裝的要求》
- 公關(guān)總監(jiān)崗位能力考試題庫(kù)含答案
- 學(xué)堂在線 大數(shù)據(jù)與城市規(guī)劃 期末考試答案
- MOOC 跨文化交際通識(shí)通論-揚(yáng)州大學(xué) 中國(guó)大學(xué)慕課答案
- 00和值到27和值的算法書
- 冠脈支架內(nèi)血栓的防治策略課件
- 青海湖的無(wú)邊湖光
- 華文慕課計(jì)算機(jī)網(wǎng)絡(luò)原理和因特網(wǎng)(北京大學(xué))章節(jié)測(cè)驗(yàn)答案
- 員工激勵(lì)管理方案模板
- GB/T 5008.2-2005起動(dòng)用鉛酸蓄電池產(chǎn)品品種和規(guī)格
- GB/T 27696-2011一般起重用4級(jí)鍛造吊環(huán)螺栓
- GB/T 25000.10-2016系統(tǒng)與軟件工程系統(tǒng)與軟件質(zhì)量要求和評(píng)價(jià)(SQuaRE)第10部分:系統(tǒng)與軟件質(zhì)量模型
- GB/T 21470-2008錘上鋼質(zhì)自由鍛件機(jī)械加工余量與公差盤、柱、環(huán)、筒類
評(píng)論
0/150
提交評(píng)論