版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年遼寧省阜新市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
2.
3.A.A.1
B.3
C.
D.0
4.
5.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面6.A.A.
B.
C.
D.
7.
8.當(dāng)x一0時(shí),與3x2+2x3等價(jià)的無(wú)窮小量是().
A.2x3
B.3x2
C.x2
D.x3
9.A.A.
B.
C.
D.
10.()。A.
B.
C.
D.
11.A.A.∞B.1C.0D.-112.A.A.f(2)-f(0)
B.
C.
D.f(1)-f(0)
13.下列結(jié)論正確的有A.若xo是f(x)的極值點(diǎn),則x0一定是f(x)的駐點(diǎn)
B.若xo是f(x)的極值點(diǎn),且f’(x0)存在,則f’(x)=0
C.若xo是f(x)的駐點(diǎn),則x0一定是f(xo)的極值點(diǎn)
D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)
14.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
15.
16.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個(gè)平面B.雙曲柱面C.橢圓柱面D.圓柱面17.設(shè)函數(shù)為().A.A.0B.1C.2D.不存在18.()。A.2πB.πC.π/2D.π/419.A.A.-3/2B.3/2C.-2/3D.2/3
20.
二、填空題(20題)21.
22.
23.24.設(shè)f(0)=0,f'(0)存在,則25.設(shè)f(x)=esinx,則=________。26.
27.y=ln(1+x2)的單調(diào)增加區(qū)間為_(kāi)_____.
28.設(shè)sinx為f(x)的原函數(shù),則f(x)=______.
29.
30.
31.
32.33.34.35.36.
37.
38.
39.
40.級(jí)數(shù)的收斂半徑為_(kāi)_____.三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).42.43.證明:44.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.47.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
48.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
49.求曲線在點(diǎn)(1,3)處的切線方程.50.求微分方程的通解.51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.52.
53.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
54.
55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
57.
58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.59.60.四、解答題(10題)61.
62.
(1)切點(diǎn)A的坐標(biāo)(a,a2).
(2)過(guò)切點(diǎn)A的切線方程。
63.
64.
65.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.
66.
67.設(shè)x2為f(x)的原函數(shù).求.
68.
69.70.五、高等數(shù)學(xué)(0題)71.
,求xzx+yzy=_____________。
六、解答題(0題)72.
參考答案
1.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。
2.D解析:
3.B本題考查的知識(shí)點(diǎn)為重要極限公式.可知應(yīng)選B.
4.A
5.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
6.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
因此選C.
7.C
8.B由于當(dāng)x一0時(shí),3x2為x的二階無(wú)窮小量,2x3為戈的三階無(wú)窮小量.因此,3x2+2x3為x的二階無(wú)窮小量.又由,可知應(yīng)選B.
9.D本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的基本性質(zhì).
10.A
11.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
12.C本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和不定積分的性質(zhì).
可知應(yīng)選C.
13.B
14.B
15.A
16.A
17.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.
由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.
18.B
19.A
20.A
21.
22.11解析:
23.
24.f'(0)本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f'(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f'(0)存在,并沒(méi)有給出,f'(z)(x≠0)存在,也沒(méi)有給出,f'(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.25.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。26.由可變上限積分求導(dǎo)公式可知27.(0,+∞)本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.
由于y=ln(1+x2),其定義域?yàn)?-∞,+∞).
又由于,令y'=0得唯一駐點(diǎn)x=0.
當(dāng)x>0時(shí),總有y'>0,從而y單調(diào)增加.
可知y=ln(1+x2)的單調(diào)增加區(qū)間為(0,+∞).
28.cosxcosx解析:本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)'=cosx.29.本題考查的知識(shí)點(diǎn)為無(wú)窮小的性質(zhì)。
30.0<k≤10<k≤1解析:
31.
32.發(fā)散
33.本題考查的知識(shí)點(diǎn)為定積分的換元法.
34.ln(1+x)+C本題考查的知識(shí)點(diǎn)為換元積分法.
35.解析:
36.本題考查了交換積分次序的知識(shí)點(diǎn)。
37.2
38.
39.1/24
40.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給級(jí)數(shù)為缺項(xiàng)情形,由于
41.
列表:
說(shuō)明
42.
43.
44.由一階線性微分方程通解公式有
45.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
46.
47.
48.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%49.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
50.51.函數(shù)的定義域?yàn)?/p>
注意
52.
則
53.由等價(jià)無(wú)窮小量的定義可知
54.
55.
56.由二重積分物理意義知
57.
58.
59.
60.
61.62.本題考查的知識(shí)點(diǎn)為定積分的幾何意義和曲線的切線方程.
α=1.
因此A點(diǎn)的坐標(biāo)為(1,1).
過(guò)A點(diǎn)的切線方程為y一1=2(x一1)或y=2x一1.
本題在利用定積分表示平面圖形時(shí),以y為積分變量,以簡(jiǎn)化運(yùn)算,這是值
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 患者心理護(hù)理中的倫理問(wèn)題
- 白癜風(fēng)患者的家庭護(hù)理和家庭照顧
- 大豐市小海中學(xué)高二生物三同步課程講義第講生態(tài)系統(tǒng)的穩(wěn)定性
- 2025年辦公用品快遞配送包裝合同協(xié)議
- 多模態(tài)數(shù)據(jù)驅(qū)動(dòng)的健康診斷技術(shù)
- 第13課 西歐經(jīng)濟(jì)和社會(huì)的發(fā)展
- 2025年智能書(shū)法助手:教育政策適應(yīng)性
- 基于大數(shù)據(jù)的心理健康風(fēng)險(xiǎn)預(yù)警系統(tǒng)
- 城市音樂(lè)空間與聽(tīng)覺(jué)體驗(yàn)研究
- 2026 年中職康復(fù)治療技術(shù)(按摩推拿)試題及答案
- 2026年遼寧生態(tài)工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)必考題
- 2026屆高考化學(xué)沖刺復(fù)習(xí)水溶液中離子平衡
- 2025年產(chǎn)業(yè)融合發(fā)展與區(qū)域經(jīng)濟(jì)一體化進(jìn)程研究可行性研究報(bào)告
- 《國(guó)家賠償法》期末終結(jié)性考試(占總成績(jī)50%)-國(guó)開(kāi)(ZJ)-參考資料
- 新教科版四上科學(xué)2.2《呼吸與健康生活》優(yōu)質(zhì)課件
- 數(shù)字化智慧病理科建設(shè)白皮書(shū)
- 七人學(xué)生小品《如此課堂》劇本臺(tái)詞手稿
- 綠盾加密軟件技術(shù)白皮書(shū)
- GB/T 7600-2014運(yùn)行中變壓器油和汽輪機(jī)油水分含量測(cè)定法(庫(kù)侖法)
- 比較文學(xué)概論馬工程課件 第5章
- 跨境人民幣業(yè)務(wù)介紹-楊吉聰
評(píng)論
0/150
提交評(píng)論