版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
常微分方程總復(fù)習(xí)內(nèi)容總結(jié)緒論一階常微分方程的初等解法一階常微分方程初值問題解的基本理論高階線性方程一階線性微分方程組非線性微分方程(穩(wěn)定性)緒論內(nèi)容總結(jié) 微分方程、常微分方程、初值問題(Cauchy問題)、方程的解、通解、特解、積分曲線、線素、線素場(chǎng)、微分方程和解的幾何意義,幾個(gè)常見的微分方程模型。基本要求1、熟練掌握微分方程的所有基本概念;
2、會(huì)針對(duì)一些簡(jiǎn)單的背景建立微分方程模型并求解。一階常微分方程的初等解法內(nèi)容總結(jié) 變量可分離方程、齊次方程、齊次的擴(kuò)展類型、一階線性方程、Bernoulli方程、恰當(dāng)方程、積分因子、一階隱方程(四種可解類型)、變量代換。基本要求1、熟練掌握所有基本可解類型(必考);
2、會(huì)使用一階線性方程的通解公式證明有關(guān)結(jié)論;
3、會(huì)解簡(jiǎn)單的積分方程.一階常微分方程初值問題解的基本理論內(nèi)容總結(jié) 一階初值問題的存在及唯一性定理、解的延拓定理、解對(duì)初值連續(xù)依賴性定理(連續(xù)性定理)、解對(duì)初值的可微性定理.基本要求1、熟練掌握存在定理(會(huì)完整闡述),掌握Picard逐次逼近法的基本過程(五個(gè)命題)。2、掌握解的延拓定理(會(huì)完整敘述,弄清不同的區(qū)域形態(tài)下延拓的最終情況);
3、會(huì)闡述解對(duì)初值的連續(xù)依賴性定理和連續(xù)性定理;
4、會(huì)闡述解對(duì)初值的可微性定理,會(huì)寫出解對(duì)初值的偏導(dǎo)數(shù)公式.高階線性微分方程內(nèi)容總結(jié)n階線性微分方程的形態(tài)、齊次方程、非齊次方程齊次方程解的疊加性、函數(shù)的線性相關(guān)性、Wronsky行列式(W行列式判定函數(shù)相關(guān)性)、齊線性方程的基本解組和通解結(jié)構(gòu).非齊次線性方程解的疊加原理、非齊方程通解結(jié)構(gòu)解、常數(shù)變易法復(fù)值函數(shù)定義、分析性質(zhì)、運(yùn)算法則;復(fù)指函數(shù)的定義性質(zhì)、Euler公式常系數(shù)線性方程的基本解組求法(特別重要)Euler方程常系數(shù)非齊次線性方程的求解、兩種特殊的非齊次項(xiàng)、待定系數(shù)法和復(fù)值函數(shù)法幾種特殊的高階方程的降階、二階線性方程的降階(重點(diǎn))二階線性方程的冪級(jí)數(shù)解法(了解)基本要求熟練掌握齊線性方程和非齊線性方程的通解結(jié)構(gòu)熟練掌握常系數(shù)齊線性方程的求解(包括Euler方程)熟練掌握具有特殊類型非齊次項(xiàng)的非齊次線性方程的求解(待定系數(shù)法、復(fù)值函數(shù)法)熟練掌握二階線性方程的降價(jià)公式(得到一個(gè)非零解的前提下求出另一個(gè)線性無關(guān)的解)冪級(jí)數(shù)解法(了解即可)一階線性微分方程組內(nèi)容總結(jié)一階線性微分方程組的形態(tài),矩陣表示,高階線性方程轉(zhuǎn)化為等價(jià)的線性方程組齊線性方程組的通解結(jié)構(gòu),基解矩陣,通解表示,基解矩陣的有關(guān)性質(zhì)非齊線性方程組的通解結(jié)構(gòu),常數(shù)變異公式,通解公式,特解公式矩陣指數(shù),矩陣指數(shù)的性質(zhì)常系數(shù)齊線性方程組的基解矩陣計(jì)算(重點(diǎn))常系數(shù)非齊次線性方程組的求解基本要求熟練掌握齊線性方程和非齊線性方程的通解結(jié)構(gòu)熟練掌握常系數(shù)齊線性方程基解矩陣的求解(重點(diǎn))熟練掌握較簡(jiǎn)單的常系數(shù)非齊次線性方程的求解試卷結(jié)構(gòu)填空題20分
1、基本概念;2、基本結(jié)論計(jì)算題50~60分
各種類型的微分方程的求解(7~9題)應(yīng)用題10分左右
常微分方程建模并求解證明題10分左右
微分方程復(fù)習(xí)1、基本概念微分方程凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫微分方程.微分方程的階微分方程中出現(xiàn)的未知函數(shù)的最高階導(dǎo)數(shù)的階數(shù)稱為微分方程的階.微分方程的解代入微分方程能使方程成為恒等式的函數(shù)稱為微分方程的解.1、基本概念線性微分方程:當(dāng)微分方程中所含的未知函數(shù)及其各階導(dǎo)數(shù)全是一次冪時(shí),微分方程就稱為線性微分方程.在線性微分方程中,若未知函數(shù)及其各階導(dǎo)數(shù)的系數(shù)全是常數(shù),則稱這樣的微分方程為常系數(shù)線性微分方程
通解如果微分方程的解中含有任意常數(shù),并且任意常數(shù)的個(gè)數(shù)與微分方程的階數(shù)相同,這樣的解叫做微分方程的通解.特解
確定了通解中的任意常數(shù)以后得到的解,叫做微分方程的特解.初始條件
用來確定任意常數(shù)的條件.初值問題
求微分方程滿足初始條件的解的問題,叫初值問題.1、基本概念(1)可分離變量的微分方程2、一階微分方程的解法2、一階微分方程的解法(2)齊次方程解法作變量代換齊次方程.(其中h和k是待定的常數(shù))否則為非齊次方程.(3)可化為齊次的方程解法化為齊次方程.2、一階微分方程的解法(4)一階線性微分方程方程稱為齊次的.方程稱為非齊次的.齊次方程的通解為1、2、一階微分方程的解法2、非齊次微分方程的通解為(5)伯努利(Bernoulli)方程方程為線性微分方程.
方程為非線性微分方程.2、一階微分方程的解法解法經(jīng)過變量代換化為線性微分方程.例33、可降階的高階微分方程的解法解法型接連積分n次,得通解.3、可降階的高階微分方程的解法特點(diǎn)型解法代入原方程,得3、可降階的高階微分方程的解法3、可降階的高階微分方程的解法特點(diǎn)型解法3、可降階的高階微分方程的解法例6解代入方程,得故方程的通解為3、可降階的高階微分方程的解法(1)二階齊次方程解的結(jié)構(gòu):4.線性微分方程解的結(jié)構(gòu)(2)二階非齊次線性方程的解的結(jié)構(gòu)例7解(1)由題設(shè)可得:解此方程組,得(2)原方程為由解的結(jié)構(gòu)定理得方程的通解為5、二階常系數(shù)齊次線性方程解法n階常系數(shù)線性微分方程二階常系數(shù)齊次線性方程二階常系數(shù)非齊次線性方程解法由常系數(shù)齊次線性方程的特征方程的根確定其通解的方法稱為特征方程法.特征方程為5、二階常系數(shù)齊次線性方程解法特征方程為特征方程的根通解中的對(duì)應(yīng)項(xiàng)推廣:
階常系數(shù)齊次線性方程解法5、二階常系數(shù)齊次線性方程解法6、二階常系數(shù)非齊次線性微分方程解法二階常系數(shù)非齊次線性方程解法
待定系數(shù)法.6、二階常系數(shù)非齊次線性微分方程解法二、典型例題例1解原方程可化為代入原方程得分離變量?jī)蛇叿e分所求通解為二、典型例題例2解特征方程特征根對(duì)應(yīng)的齊次方程的通解為設(shè)原方程的特解為二、典型例題原方程的一個(gè)特解為故原方程的通解為二、典型例題由解得所以原方程滿足初始條件的特解為二、典型例題例3解特征方程特征根對(duì)應(yīng)的齊方的通解為設(shè)原方程的特解為二、典型例題由解得二、典
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣靈輔警招聘真題及答案
- 國(guó)家知識(shí)產(chǎn)權(quán)局專利局專利審查協(xié)作湖北中心2026年度專利審查員公開招聘40人備考題庫(kù)含答案詳解
- 廈門大學(xué)附屬第一醫(yī)院漳州招商局開發(fā)區(qū)分院2025年第四批公開招聘編外工作人員備考題庫(kù)附答案詳解
- 咸安區(qū)2026年面向教育部直屬師范大學(xué)公費(fèi)師范畢業(yè)生專項(xiàng)招聘?jìng)淇碱}庫(kù)完整參考答案詳解
- 2025年西安市雁塔區(qū)第一小學(xué)教師招聘考試備考題庫(kù)及答案解析
- 2025年12月云南玉溪市易門縣華億投資有限責(zé)任公司(第二次)招聘8人備考核心題庫(kù)及答案解析
- 2025年衛(wèi)生健康局招聘?jìng)淇碱}庫(kù)及1套參考答案詳解
- 2025年第十師北屯市公安局面向社會(huì)公開招聘警務(wù)輔助人員備考題庫(kù)及1套完整答案詳解
- 構(gòu)建區(qū)域教育評(píng)價(jià)改革模型:人工智能評(píng)價(jià)結(jié)果應(yīng)用與效果評(píng)估教學(xué)研究課題報(bào)告
- 國(guó)家知識(shí)產(chǎn)權(quán)局專利局專利審查協(xié)作四川中心2026年度專利審查員公開招聘?jìng)淇碱}庫(kù)有答案詳解
- 火災(zāi)自動(dòng)報(bào)警系統(tǒng)故障應(yīng)急預(yù)案
- 人貨電梯施工方案
- 南大版一年級(jí)心理健康第7課《情緒小世界》課件
- 光大金甌資產(chǎn)管理有限公司筆試
- 算力產(chǎn)業(yè)園項(xiàng)目計(jì)劃書
- 塔式起重機(jī)安全管理培訓(xùn)課件
- 老年髖部骨折快速康復(fù)治療
- 【初中地理】跨學(xué)科主題學(xué)習(xí)探 索外來食料作物的傳播史課件-2024-2025學(xué)年七年級(jí)上學(xué)期(人教版2024)
- 四川省南充市2024-2025學(xué)年高一地理上學(xué)期期末考試試題含解析
- 化學(xué)品管理控制程序
- 探索·鄱陽湖智慧樹知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論