下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進行分析,隨機抽取了200分到450分之間的2000名學生的成績,并根據這2000名學生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內的學生人數(shù)為()A.800 B.1000 C.1200 D.16002.函數(shù)在上的大致圖象是()A. B.C. D.3.若雙曲線:的一條漸近線方程為,則()A. B. C. D.4.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.集合,,則()A. B. C. D.6.某個小區(qū)住戶共200戶,為調查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1407.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個8.如圖所示,三國時代數(shù)學家在《周脾算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,?。?,則落在小正方形(陰影)內的米粒數(shù)大約為()A.20 B.27 C.54 D.649.已知,且,則在方向上的投影為()A. B. C. D.10.已知集合,,若,則實數(shù)的值可以為()A. B. C. D.11.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.312.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知,則滿足的的取值范圍為_______.14.已知復數(shù)(為虛數(shù)單位)為純虛數(shù),則實數(shù)的值為_____.15.已知數(shù)列的前項和為,,,,則滿足的正整數(shù)的所有取值為__________.16.曲線在點處的切線方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(1)求證:平面平面;(2)設為的中點,為上的動點(不與重合)求二面角的正切值的最小值18.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.19.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.20.(12分)已知函數(shù)(I)當時,解不等式.(II)若不等式恒成立,求實數(shù)的取值范圍21.(12分)已知拋物線C:x24py(p為大于2的質數(shù))的焦點為F,過點F且斜率為k(k0)的直線交C于A,B兩點,線段AB的垂直平分線交y軸于點E,拋物線C在點A,B處的切線相交于點G.記四邊形AEBG的面積為S.(1)求點G的軌跡方程;(2)當點G的橫坐標為整數(shù)時,S是否為整數(shù)?若是,請求出所有滿足條件的S的值;若不是,請說明理由.22.(10分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由圖可列方程算得a,然后求出成績在內的頻率,最后根據頻數(shù)=總數(shù)×頻率可以求得成績在內的學生人數(shù).【詳解】由頻率和為1,得,解得,所以成績在內的頻率,所以成績在內的學生人數(shù).故選:B【點睛】本題主要考查頻率直方圖的應用,屬基礎題.2.D【解析】
討論的取值范圍,然后對函數(shù)進行求導,利用導數(shù)的幾何意義即可判斷.【詳解】當時,,則,所以函數(shù)在上單調遞增,令,則,根據三角函數(shù)的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數(shù)在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導數(shù)與函數(shù)單調性的關系以及導數(shù)的幾何意義,屬于中檔題.3.A【解析】
根據雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.4.B【解析】
構造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據題意恰當?shù)倪x取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關系,一般利用長方體為載體進行分析.5.A【解析】
計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.6.C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內用水量超過15立方米的住戶戶數(shù)為,故選C7.C【解析】
求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關鍵是對集合元素的認識,本題中集合都是曲線上的點集.8.B【解析】
設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數(shù)大約為,利用概率模擬列方程即可求解?!驹斀狻吭O大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數(shù)大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。9.C【解析】
由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關系是解題關鍵.10.D【解析】
由題意可得,根據,即可得出,從而求出結果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.11.A【解析】
根據正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據向量數(shù)量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據向量數(shù)量積的坐標運算可得結果,屬于簡單題.12.D【解析】
如圖所示:過點作垂直準線于,交軸于,則,設,,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準線于,交軸于,則,設,,則,當,即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學生的計算能力和轉化能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
將f(x)寫成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調性解不等式即可得到答案.【詳解】根據題意,f(x)=x|x|=,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).【點睛】本題考查分段函數(shù)的奇偶性與單調性的判定以及應用,注意分析f(x)的奇偶性與單調性.14.【解析】
利用復數(shù)的乘法求解再根據純虛數(shù)的定義求解即可.【詳解】解:復數(shù)為純虛數(shù),解得.故答案為:.【點睛】本題主要考查了根據復數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎題.15.20,21【解析】
由題意知數(shù)列奇數(shù)項和偶數(shù)項分別為等差數(shù)列和等比數(shù)列,則根據為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗即可.【詳解】解:由題意知數(shù)列的奇數(shù)項構成公差為的等差數(shù)列,偶數(shù)項構成公比為的等比數(shù)列,則;.當時,,.當時,,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點睛】本題考查等差數(shù)列與等比數(shù)列通項與求和公式,是綜合題,分清奇數(shù)項和偶數(shù)項是解題的關鍵.16.【解析】
對函數(shù)求導,得出在處的一階導數(shù)值,即得出所求切線的斜率,再運用直線的點斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點睛】本題考查運用函數(shù)的導函數(shù)求函數(shù)在切點處的切線方程,關鍵在于求出在切點處的導函數(shù)值就是切線的斜率,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)推導出,,從而平面,由面面垂直的判定定理即可得證.(2)過作,以為坐標原點,建立如圖所示空間坐標系,設,利用空間向量法表示出二面角的余弦值,當余弦值取得最大時,正切值求得最小值;【詳解】(1)因為,面,,平面,平面,平面,又平面,平面平面;(2)過作,以為坐標原點,建立如圖所示空間坐標系,則,設,則平面的一個法向量為設平面的一個法向量為則,即,令,如圖二面角的平面角為銳角,設二面角為,則,時取得最大值,最大值為,則最小值為【點睛】本題考查面面垂直的證明,利用空間向量法解決立體幾何問題,屬于中檔題.18.(1):,直線:;(2).【解析】
(1)由消參法把參數(shù)方程化為普通方程,再由公式進行直角坐標方程與極坐標方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、【詳解】(1)消去參數(shù)可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標方程是;由,化為直角坐標方程為.(2)設,則,,,當時,取得最大值為.【點睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,掌握公式可輕松自如進行極坐標方程與直角坐標方程的互化.19.(1);(2);(2)見解析.【解析】
(1)由圓的方程求出點坐標,得雙曲線的,再計算出后可得漸近線方程;(2)設,由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標,計算;(3)由已知得,設,由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設,由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設由得:,,由得,解得,,,所以,,,當且僅當三點共線時,等號成立,∴軸上不存在點,使得.【點睛】本題考查求漸近線方程,考查圓與雙曲線相交問題.考查向量的加法運算,本題對學生的運算求解能力要求較高,解題時都是直接求出交點坐標.難度較大,屬于困難題.20.(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據零點分區(qū)間法,去掉絕對值解不等式;(2)根據絕對值不等式的性質得,因此將問題轉化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質得:,要使不等式恒成立,則當時,不等式恒成立;當時,解不等式得.綜上.所以實數(shù)的取值范圍為.21.(1)(2)當G點橫坐標為整數(shù)時,S不是整數(shù).【解析】
(1)先求解導數(shù),得出切線方程,聯(lián)立方程得出交點G的軌跡方程;(2)先求解弦長,再分別求解點到直線的距離,表示出四邊形的面積,結合點G的橫坐標為整數(shù)進行判斷.【詳解】(1)設,則,拋物線C的方程可化為,則,所以曲線C在點A處的切線方程為,在點B處的切線方程為,因為兩切線均過點G,所以,所以A,B兩點均在直線上,所以直線AB的方程為,又因為直線AB過點F(0,p),所以,即G點軌跡方程為;(2)設點G(,),由(1)可知,直線AB的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河北唐山遵化市事業(yè)單位選聘高層次人才8人參考考試題庫及答案解析
- 公務員考試行測真題言語理解部分帶答案
- 2025四川廣安顧縣鎮(zhèn)招聘城鎮(zhèn)公益性崗位考試核心題庫及答案解析
- 2025濟南市平陰豐源炭素有限責任公司招聘(29人)備考核心試題附答案解析
- 2025湖北黃岡市英山縣事業(yè)單位第二批考核招聘“三支一扶”服務期滿人員7人考試重點題庫及答案解析
- 2026年浙江大學醫(yī)學院附屬第四醫(yī)院招聘高層次人才50人筆試重點試題及答案解析
- 2025貴州安順市鎮(zhèn)寧自治縣總工會公益性崗位工作人員招聘1人參考考試試題及答案解析
- 2026年廣西國際壯醫(yī)醫(yī)院(第二批)人才招聘4人筆試重點試題及答案解析
- 2025河南花花牛乳業(yè)集團招聘15人考試重點題庫及答案解析
- 2025年合肥產投康養(yǎng)集團有限公司社會招聘1名考試核心題庫及答案解析
- 內蒙古自治區(qū)烏蘭察布市集寧區(qū)2025-2026學年九年級上學期12月期末考試(中考診斷)化學試卷(含答案)
- 2025年廣東省第一次普通高中學業(yè)水平合格性考試(春季高考)英語試題(含答案詳解)
- 2026年合同全生命周期管理培訓課件與風險防控手冊
- 湖南中考生物真題三年(2023-2025)分類匯編:專題10 生物的遺傳和變異(解析版)
- 理賠管理經驗分享
- 設計外包框架合同范本
- 2026年日歷表(每月一頁、可編輯、可備注)
- DB44∕T 1297-2025 聚乙烯單位產品能源消耗限額
- 講給老年人聽的助聽器
- 大清包勞務合同樣本及條款解讀
- 醫(yī)德醫(yī)風建設專題黨課講稿:堅守醫(yī)者仁心 永葆清廉本色
評論
0/150
提交評論