2022-2023學(xué)年山東省萊蕪市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第1頁
2022-2023學(xué)年山東省萊蕪市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第2頁
2022-2023學(xué)年山東省萊蕪市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第3頁
2022-2023學(xué)年山東省萊蕪市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第4頁
2022-2023學(xué)年山東省萊蕪市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年山東省萊蕪市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(22題)1.某校選修乒乓球課程的學(xué)生中,高一年級(jí)有30名,高二年級(jí)有40名.現(xiàn)用分層抽樣的方法在這70名學(xué)生中抽取一個(gè)樣本,已知在高一年級(jí)的學(xué)生中抽取了6名,則在高二年級(jí)的學(xué)生中應(yīng)抽取的人數(shù)為()A.6B.8C.10D.12

2.若輸入-5,按圖中所示程序框圖運(yùn)行后,輸出的結(jié)果是()A.-5B.0C.-1D.1

3.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2

B.(x-1)2+(y+1)2=2

C.(x-1)2+(y-1)2=2

D.(x+1)2+(y+1)2=2

4.A.3B.4C.5D.6

5.已知a=(1,-1),b=(-1,2),則(2a+b)×a=()A.1B.-1C.0D.2

6.5人排成一排,甲必須在乙之后的排法是()A.120B.60C.24D.12

7.下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是A.B.C.D.y=3x

8.A.B.C.

9.在2,0,1,5這組數(shù)據(jù)中,隨機(jī)取出三個(gè)不同的數(shù),則數(shù)字2是取出的三個(gè)不同數(shù)的中位數(shù)的概率為()A.3/4B.5/8C.1/2D.1/4

10.實(shí)數(shù)4與16的等比中項(xiàng)為A.-8

B.C.8

11.若logmn=-1,則m+3n的最小值是()A.

B.

C.2

D.5/2

12.直線x+y+1=0的傾斜角為()A.

B.

C.

D.-1

13.計(jì)算sin75°cos15°-cos75°sin15°的值等于()A.0

B.1/2

C.

D.

14.設(shè)全集={a,b,c,d},A={a,b}則C∪A=()A.{a,b}B.{a,c}C.{a,d)D.{c,d}

15.A≠ф是A∩B=ф的()A.充分條件B.必要條件C.充要條件D.無法確定

16.拋物線y=2x2的準(zhǔn)線方程為()A.y=-1/8B.y=-1/4C.y=-1/2D.y=-1

17.若集合A={1,2},集合B={1},則集合A與集合B的關(guān)系是()A.

B.A=B

C.B∈A

D.

18.已知互相垂直的平面α,β交于直線l若直線m,n滿足m⊥a,n⊥β則()A.m//LB.m//nC.n⊥LD.m⊥n

19.函數(shù)在(-,3)上單調(diào)遞增,則a的取值范圍是()A.a≥6B.a≤6C.a>6D.-8

20.函數(shù)y=lg(x+1)的定義域是()A.(-∞,-1)B.(-∞,1)C.(-1,+∞)D.(1,-∞)

21.函數(shù)y=的定義域是()A.(-2,2)B.[-2,2)C.(-2,2]D.[-2,2]

22.函數(shù)和在同一直角坐標(biāo)系內(nèi)的圖像可以是()A.

B.

C.

D.

二、填空題(10題)23.一個(gè)口袋中裝有大小相同、質(zhì)地均勻的兩個(gè)紅球和兩個(gè)白球,從中任意取出兩個(gè),則這兩個(gè)球顏色相同的概率是______.

24.

25.

26.

27.雙曲線x2/4-y2/3=1的虛軸長為______.

28.i為虛數(shù)單位,1/i+1/i3+1/i5+1/i7____.

29.已知函數(shù)則f(f⑶)=_____.

30.已知函數(shù)f(x)=ax3的圖象過點(diǎn)(-1,4),則a=_______.

31.

32.已知_____.

三、計(jì)算題(10題)33.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。

34.在等差數(shù)列{an}中,前n項(xiàng)和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.

35.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

36.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

37.解不等式4<|1-3x|<7

38.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

39.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

40.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

41.求焦點(diǎn)x軸上,實(shí)半軸長為4,且離心率為3/2的雙曲線方程.

42.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

四、簡答題(10題)43.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時(shí),判斷f(x)的單調(diào)性并加以證明.

44.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC

45.以點(diǎn)(0,3)為頂點(diǎn),以y軸為對(duì)稱軸的拋物線的準(zhǔn)線與雙曲線3x2-y2+12=0的一條準(zhǔn)線重合,求拋物線的方程。

46.組成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個(gè)數(shù)

47.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時(shí),判斷函數(shù)的單調(diào)性并加以證明。

48.已知等差數(shù)列{an},a2=9,a5=21(1)求{an}的通項(xiàng)公式;(2)令bn=2n求數(shù)列{bn}的前n項(xiàng)和Sn.

49.由三個(gè)正數(shù)組成的等比數(shù)列,他們的倒數(shù)和是,求這三個(gè)數(shù)

50.三個(gè)數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。

51.在拋物線y2=12x上有一弦(兩端點(diǎn)在拋物線上的線段)被點(diǎn)M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長度.

52.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.

五、解答題(10題)53.

54.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

55.已知{an}為等差數(shù)列,且a3=-6,a6=0.(1)求{an}的通項(xiàng)公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.

56.為了解某地區(qū)的中小學(xué)生的視力情況,擬從該地區(qū)的中小學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,事先已了解到該地區(qū)小學(xué)、初中、高中三個(gè)學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是().A.簡單隨機(jī)抽樣B.按性別分層抽樣C.按學(xué)段分層抽樣D.系統(tǒng)抽樣

57.已知等比數(shù)列{an},a1=2,a4=16.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{nan}的前n項(xiàng)和{Sn}.

58.已知等差數(shù)列{an}的前72項(xiàng)和為Sn,a5=8,S3=6.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{an}的前k項(xiàng)和Sk=72,求k的值.

59.某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之內(nèi),其年生產(chǎn)的總成本:y(萬元)與年產(chǎn)量x(噸)之間的關(guān)系可近似地表示為y=x2/10-30x+400030x+4000.(1)當(dāng)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低,并求每噸最低平均成本;(2)若每噸平均出廠價(jià)為16萬元,求年生產(chǎn)多少噸時(shí),可獲得最大的年利潤,并求最大年利潤.

60.己知sin(θ+α)=sin(θ+β),求證:

61.如圖,ABCD-A1B1C1D1為長方體.(1)求證:B1D1//平面BC1D;(2)若BC=CC1,,求直線BC1與平面ABCD所成角的大小.

62.如圖,在三棱錐A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°點(diǎn)E,F(xiàn)分別是AC,AD的中點(diǎn).(1)求證:EF//平面BCD;(2)求三棱錐A-BCD的體積.

六、單選題(0題)63.已知A(3,1),B(6,1),C(4,3)D為線段BC的中點(diǎn),則向量AC與DA的夾角是()A.

B.

C.

D.

參考答案

1.B分層抽樣方法.試題分析:根據(jù)題意,由分層抽樣知識(shí)可得:在高二年級(jí)的學(xué)生中應(yīng)抽取的人數(shù)為:40×6/30=8

2.D程序框圖的運(yùn)算.因x=-5,不滿足>0,所以在第一個(gè)判斷框中

3.B

4.B線性回歸方程的計(jì)算.將(x,y)代入:y=1+bx,得b=4

5.A平面向量的線性運(yùn)算.因?yàn)閍=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1

6.C

7.D

8.A

9.C隨機(jī)抽樣的概率.分析題意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4種取法,符合題意的取法有2種,故所求概率P=1/2.故選C

10.B

11.B對(duì)數(shù)性質(zhì)及基本不等式求最值.由㏒mn=-1,得m-1==n,則mn=1.由于m>0,n>0,∴m+3n≥2.

12.C由直線方程可知其斜率k=-1,則傾斜角正切值為tanα=-1,所以傾斜角為3π/4。

13.D三角函數(shù)的兩角和差公式sin75°cosl5°-cos75°sinl5°=sin(75°-15°)=sin60°=

14.D集合的運(yùn)算.C∪A={c,d}.

15.A

16.A

17.A由于B中的元素也存在于A,因此B包含于A。

18.C直線與平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因?yàn)閚⊥β,所以n⊥L.

19.A

20.C函數(shù)的定義.x+1>0所以x>-1.

21.C自變量x能取到2,但是不能取-2,因此答案為C。

22.D

23.1/3古典概型及概率計(jì)算公式.兩個(gè)紅球的編號(hào)為1,2兩個(gè)白球的編號(hào)為3,4,任取兩個(gè)的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),兩球顏色相同的事件有(1,2)和(3,4),故兩球顏色相同概率為2/6=1/3

24.-2i

25.-2/3

26.5

27.2雙曲線的定義.b2=3,.所以b=.所以2b=2.

28.0.復(fù)數(shù)的運(yùn)算.1/i+1/i3+1/i5+1/i7=-i+i-i+i=0

29.2e-3.函數(shù)值的計(jì)算.由題意得,f(3)=㏒3(9-6)=1,所以f(f(3))=f⑴=2e-3.

30.-2函數(shù)值的計(jì)算.由函數(shù)f(x)=ax3-2x過點(diǎn)(-1,4),得4=a(-1)3-2×(-1),解得a=-2.

31.{x|0<x<1/3}

32.

33.

34.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

35.

36.

37.

38.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

39.

40.

41.解:實(shí)半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

42.

43.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵

若時(shí)

故當(dāng)X<-1時(shí)為增函數(shù);當(dāng)-1≤X<0為減函數(shù)

44.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC

45.由題意可設(shè)所求拋物線的方程為準(zhǔn)線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)

46.

47.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)

48.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴數(shù)列為首項(xiàng)b1=32,q=16的等比數(shù)列

49.設(shè)等比數(shù)列的三個(gè)正數(shù)為,a,aq由題意得解得,a=4,q=1或q=解得這三個(gè)數(shù)為1,4,16或16,4,1

50.由已知得:由上可解得

51.∵(1)這條弦與拋物線兩交點(diǎn)

52.(1)(2)

53.

5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論