高考數(shù)學(xué)必備的重要公式歸納大全_第1頁
高考數(shù)學(xué)必備的重要公式歸納大全_第2頁
高考數(shù)學(xué)必備的重要公式歸納大全_第3頁
高考數(shù)學(xué)必備的重要公式歸納大全_第4頁
高考數(shù)學(xué)必備的重要公式歸納大全_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第高考數(shù)學(xué)必備的重要公式歸納大全

高考數(shù)學(xué)萬能公式

概率公式

定義:p(A)=m/n,全概率公式(貝頁斯公式)某事件A是有B,C,D三種因素造成的`,求這一事件發(fā)生的概率p(A)=p(A/B)p(B)+p(A/C)p(C)+p(A/D)p(D)其中p(A/B)叫條件概率,即:在B發(fā)生的情況下,A發(fā)生的概率

誘導(dǎo)公式

弧度制下的角的表示:

sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)sec(2kπ+α)=secα(k∈Z)csc(2kπ+α)=cscα(k∈Z)

角度制下的角的表示:

sin(α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z)tan(α+k·360°)=tanα(k∈Z)cot(α+k·360°)=cotα(k∈Z)sec(α+k·360°)=secα(k∈Z)csc(α+k·360°)=cscα(k∈Z)

對數(shù)的基本性質(zhì)

如果a0,且a≠1,M0,N0,那么:1.a^log(a)(b)=b2.log(a)(a)=13.log(a)(MN)=log(a)(M)+log(a)(N);4.log(a)(M÷N)=log(a)(M)-log(a)(N);5.log(a)(M^n)=nlog(a)(M)6.log(a)[M^(1/n)]=log(a)(M)/n

定積分

形式為∫f(x)dx(上限a寫在∫上面,下限b寫在∫下面)。之所以稱其為定積分,是因?yàn)樗e分后得出的值是確定的,是一個數(shù),而不是一個函數(shù)。

常見函數(shù)的導(dǎo)數(shù)公式

①C=0(C為常數(shù)函數(shù))②(x^n)=nx^(n-1)(n∈Q);③(sinx)=cosx④(cosx)=-sinx⑤(e^x)=e^x⑥(a^x)=(a^x)_Ina(ln為自然對數(shù))⑦(Inx)=1/x(ln為自然對數(shù)X0)⑧(logax)=1/(xlna),(a0且a不等于1)⑨(sinh(x))=cosh(x)⑩(cosh(x))=sinh(x)

三角不等式

-|a|≤a≤|a||a|≤b=-b≤a≤b|a|≤b=-b≤a≤b|a|-|b|≤|a+b|≤|a|+|b||a|≤b=-b≤a≤b|a|-|b|≤|a-b|≤|a|+|b||z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1±z2±。..±zn|≤|z1|+|z2|+...+|zn|

數(shù)學(xué)數(shù)列

等差數(shù)列通項(xiàng)公式:an﹦a1﹢(n-1)d等差數(shù)列前n項(xiàng)和:Sn=[n(A1+An)]/2=nA1+[n(n-1)d]/2等比數(shù)列通項(xiàng)公式:an=a1_q^(n-1);等比數(shù)列前n項(xiàng)和:Sn=a1(1-q^n)/(1-q)=(a1-a1q^n)/(1-q)=a1/(1-q)-a1/(1-q)_q^n(n≠1)

高考必考數(shù)學(xué)公式

立體圖形及平面圖形的公式

圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)

圓的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0

拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2p_2=2pyx2=-2py

直棱柱側(cè)面積s=c_h斜棱柱側(cè)面積s=c_h

正棱錐側(cè)面積s=1/2c_h正棱臺側(cè)面積s=1/2(c+c)h

圓臺側(cè)面積s=1/2(c+c)l=pi(r+r)l球的表面積s=4pi_r2

圓柱側(cè)面積s=c_h=2pi_h圓錐側(cè)面積s=1/2_c_l=pi_r_l

弧長公式l=a_ra是圓心角的弧度數(shù)r0扇形面積公式s=1/2_l_r

錐體體積公式v=1/3_s_h圓錐體體積公式v=1/3_pi_r2h

斜棱柱體積v=sl注:其中,s是直截面面積,l是側(cè)棱長

柱體體積公式v=s_h圓柱體v=pi_r2h

圖形周長、面積、體積公式

長方形的周長=(長+寬)×2

正方形的周長=邊長×4

長方形的面積=長×寬

正方形的面積=邊長×邊長

三角形的面積

已知三角形底a,高h(yuǎn),則s=ah/2

已知三角形三邊a,b,c,半周長p,則s=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)

和:(a+b+c)_(a+b-c)_1/4

已知三角形兩邊a,b,這兩邊夾角c,則s=absinc/2

設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r

則三角形面積=(a+b+c)r/2

設(shè)三角形三邊分別為a、b、c,外接圓半徑為r

則三角形面積=abc/4r

高考數(shù)學(xué)公式總結(jié)

三角函數(shù)公式

sinα=∠α的對邊/斜邊

cosα=∠α的鄰邊/斜邊

tanα=∠α的對邊/∠α的鄰邊

cotα=∠α的鄰邊/∠α的對邊

倍角公式

Sin2A=2SinACosA

Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1

tan2A=(2tanA)/(1-tanA2)

(注:SinA2是sinA的平方sin2(A))

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a=tana·tan(π/3+a)·tan(π/3-a)

三倍角公式推導(dǎo)

sin3a=sin(2a+a)=sin2acosa+cos2asina

三角函數(shù)輔助角公式

Asinα+Bcosα=(A2+B2)’(1/2)sin(α+t),其中

sint=B/(A2+B2)’(1/2)

cost=A/(A2+B2)’(1/2)

tant=B/A

Asinα+Bcosα=(A2+B2)’(1/2)cos(α-t),tant=A/B

降冪公式

sin2(α)=(1-cos(2α))/2=versin(2α)/2

cos2(α)=(1+cos(2α))/2=covers(2α)/2

tan2(α)=(1-cos(2α))/(1+cos(2α))

三角函數(shù)推導(dǎo)公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos2α

1-cos2α=2sin2α

1+sinα=(sinα/2+cosα/2)2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3a

cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosa

sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina_2sin[(60+a)/2]cos[(60°-a)/2]_2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)

cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa_2cos[(a+30°)/2]cos[(a-30°)/2]_{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

三角函數(shù)半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin2(a/2)=(1-cos(a))/2

cos2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角函數(shù)三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

三角函數(shù)兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

三角函數(shù)和差化積

sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]

cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]

cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

三角函數(shù)積化和差

sinαsinβ=[cos(α-β)-cos(α+β)]/2

cosαcosβ=[cos(α+β)+cos(α-β)]/2

sinαcosβ=[sin(α+β)+sin(α-β)]/2

cosαsinβ=[sin(α+β)-sin(α-β)]/2

三角函數(shù)誘導(dǎo)公式

sin(-α)=-sinα

cos(-α)=cosα

tan(—a)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

sin(π-α)=sinα

cos(π-α)=-cosα

sin(π+α)=-sinα

cos(π+α)=-cosα

tanA=sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

誘導(dǎo)公式記背訣竅:奇變偶不變,符號看象限

萬能公式

sinα=2tan(α/2)/[1+tan’(α/2)]

cosα=[1-tan’(α/2)]/1+tan’(α/2)]

tanα=2tan(α/2)/[1-tan’(α/2)]

其它公式

(1)(sinα)2+(cosα)2=1

(2)1+(tanα)2=(secα)2

(3)1+(cotα)2=(cscα)2

證明下面兩式,只需將一式,左右同除(sinα)2,第二個除(cosα)2即可

(4)對于任意非直角三角形,總有

tanA+tanB+tanC=tanAtanBtanC

證:A+B=π-Ctan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得tanA+tanB+tanC=tanAtanBtanC

得證同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時,該關(guān)系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC

(8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論