版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
EngineeringElectromagnetics
W.H.HaytJr.andJ.A.BuckChapter3:ElectricFluxDensity,Gauss’Law,andDivergenceEngineeringElectromagnetics
W1FaradayExperimentHestartedwithapairofmetalspheresofdifferentsizes;thelargeroneconsistedoftwohemispheresthatcouldbeassembledaroundthesmallersphereFaradayExperimentHestartedw2+QFaradayApparatus,BeforeGroundingTheinnercharge,Q,inducesanequalandoppositecharge,-Q,ontheinsidesurfaceoftheoutersphere,byattractingfreeelectronsintheoutermaterialtowardthepositivecharge.Thismeansthatbeforetheoutersphereisgrounded,charge+Qresidesontheoutsidesurfaceoftheouterconductor.+QFaradayApparatus,BeforeGr3FaradayApparatus,AfterGroundingq=0groundattachedAttachingthegroundconnectstheoutersurfacetoanunlimitedsupplyoffreeelectrons,whichthenneutralizethepositivechargelayer.Thenetchargeontheoutersphereisthenthechargeontheinnerlayer,or-Q.FaradayApparatus,AfterGroun4InterpretationoftheFaradayExperimentq=0Faradayconcludedthatthereoccurredacharge“displacement”fromtheinnerspheretotheoutersphere.Displacementinvolvesafloworflux,
existingwithinthedielectric,andwhosemagnitudeisequivalenttotheamountof“displaced”charge.Specifically:InterpretationoftheFaraday5ElectricFluxDensityq=0Thedensityoffluxattheinnerspheresurfaceisequivalenttothedensityofchargethere(inCoul/m2)ElectricFluxDensityq=0The6VectorFieldDescriptionofFluxDensityq=0Avectorfieldisestablishedwhichpointsinthedirectionofthe“flow”ordisplacement.Inthiscase,thedirectionistheoutwardradialdirectioninsphericalcoordinates.Ateachsurface,wewouldhave:VectorFieldDescriptionofFl7Radially-DependentElectricFluxDensityq=0rAtageneralradiusrbetweenspheres,wewouldhave:ExpressedinunitsofCoulombs/m2,anddefinedovertherange(a≤r≤b)D(r)Radially-DependentElectricFl8PointChargeFieldsIfwenowlettheinnersphereradiusreducetoapoint,whilemaintainingthesamecharge,andlettheoutersphereradiusapproachinfinity,wehaveapointcharge.Theelectricfluxdensityisunchanged,butisdefinedoverallspace:C/m2(0<r<∞)Wecomparethistotheelectricfieldintensityinfreespace:V/m(0<r<∞)..andweseethat:PointChargeFieldsIfwenowl9FindingEandDfromChargeDistributionsWelearnedinChapter2that:Itnowfollowsthat:FindingEandDfromChargeDi10Gauss’LawTheelectricfluxpassingthroughanyclosedsurfaceisequaltothetotalchargeenclosedbythatsurfaceGauss’LawTheelectricfluxpa11DevelopmentofGauss’LawWedefinethedifferentialsurfacearea(avector)aswherenistheunitoutwardnormalvectortothesurface,andwheredSistheareaofthedifferentialspotonthesurfaceDevelopmentofGauss’LawWede12MathematicalStatementofGauss’LawLinecharge:Surfacecharge:Volumecharge:inwhichthechargecanexistintheformofpointcharges:Foravolumecharge,wewouldhave:oracontinuouschargedistribution:MathematicalStatementofGaus13UsingGauss’LawtoSolveforD
EvaluatedataSurfaceKnowingQ,weneedtosolveforD,usingGauss’Law:Thesolutioniseasyifwecanchooseasurface,S,overwhichtointegrate(Gaussiansurface)thatsatisfiesthefollowingtwoconditions:Theintegralnowsimplfies:Sothat:whereUsingGauss’LawtoSolvefor14Example:PointChargeFieldBeginwiththeradialfluxdensity:andconsiderasphericalsurfaceofradiusathatsurroundsthecharge,onwhich:Onthesurface,thedifferentialareais:andthis,combinedwiththeoutwardunitnormalvectoris:Example:PointChargeFieldBe15PointChargeApplication(continued)Now,theintegrandbecomes:andtheintegralissetupas:==PointChargeApplication(cont16AnotherExample:LineChargeFieldConsideralinechargeofuniformchargedensityLonthezaxisthatextendsovertherangezWeneedtochooseanappropriateGaussiansurface,beingmindfuloftheseconsiderations:Weknowfromsymmetrythatthefieldwillberadially-directed(normaltothezaxis)incylindricalcoordinates:andthatthefieldwillvarywithradiusonly:Sowechooseacylindricalsurfaceofradius,andoflengthL.AnotherExample:LineChargeF17LineChargeField(continued)Giving:Sothatfinally:LineChargeField(continued)G18AnotherExample:CoaxialTransmissionLineWehavetwoconcentriccylinders,withthezaxisdowntheircenters.SurfacechargeofdensityS
existsontheoutersurfaceoftheinnercylinder.A-directedfieldisexpected,andthisshouldvaryonlywith(likealinecharge).WethereforechooseacylindricalGaussiansurfaceoflengthLandofradius,wherea<<b.ThelefthandsideofGauss’Lawiswritten:…andtherighthandsidebecomes:AnotherExample:CoaxialTran19CoaxialTransmissionLine(continued)Wemaynowsolveforthefluxdensity:andtheelectricfieldintensitybecomes:CoaxialTransmissionLine(con20CoaxialTransmissionLine:ExteriorFieldIfaGaussiancylindricalsurfaceisdrawnoutside(b),atotalchargeofzeroisenclosed,leadingtotheconclusionthator:CoaxialTransmissionLine:Ext21ElectricFluxWithinaDifferentialVolumeElementTakingthefrontsurface,forexample,wehave:ElectricFluxWithinaDiffere22ElectricFluxWithinaDifferentialVolumeElementWenowhave:andinasimilarmanner:Therefore:minussignbecauseDx0isinwardfluxthroughthebacksurface.ElectricFluxWithinaDiffere23ChargeWithinaDifferentialVolumeElementNow,byasimilarprocess,wefindthat:andAllresultsareassembledtoyield:v=Q(byGauss’Law)whereQisthechargeenclosedwithinvolumevChargeWithinaDifferentialV24DivergenceandMaxwell’sFirstEquationMathematically,thisis:Applyingo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- accaf5考試題目及答案
- 心理健康知識內(nèi)容
- 水電設(shè)備維護管理技術(shù)方案
- 景觀水體生態(tài)修復方案
- 隧道通行能力分析與評估方案
- 婦幼保健院員工激勵措施方案
- 儲備糧倉庫設(shè)備維護保養(yǎng)方案
- 銷售團隊建設(shè)與管理實施方案
- 婦幼保健院科技成果應(yīng)用方案
- 儲備糧倉庫土地利用規(guī)劃方案
- 2026年齊齊哈爾高等師范??茖W校單招職業(yè)技能測試題庫必考題
- 輸變電工程安全教育課件
- 物業(yè)項目綜合服務(wù)方案
- 大健康行業(yè)經(jīng)營保障承諾函(7篇)
- 2025-2026學年北京市西城區(qū)初二(上期)期末考試物理試卷(含答案)
- 2024年度初會職稱《初級會計實務(wù)》真題庫匯編(含答案)
- 產(chǎn)科品管圈成果匯報降低產(chǎn)后乳房脹痛發(fā)生率課件
- 綠植租賃合同
- 狼蒲松齡原文及翻譯
- 2023初會職稱《經(jīng)濟法基礎(chǔ)》習題庫及答案
- 比亞迪Forklift軟件使用方法
評論
0/150
提交評論