版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
EngineeringElectromagnetics
W.H.HaytJr.andJ.A.BuckChapter3:ElectricFluxDensity,Gauss’Law,andDivergenceEngineeringElectromagnetics
W1FaradayExperimentHestartedwithapairofmetalspheresofdifferentsizes;thelargeroneconsistedoftwohemispheresthatcouldbeassembledaroundthesmallersphereFaradayExperimentHestartedw2+QFaradayApparatus,BeforeGroundingTheinnercharge,Q,inducesanequalandoppositecharge,-Q,ontheinsidesurfaceoftheoutersphere,byattractingfreeelectronsintheoutermaterialtowardthepositivecharge.Thismeansthatbeforetheoutersphereisgrounded,charge+Qresidesontheoutsidesurfaceoftheouterconductor.+QFaradayApparatus,BeforeGr3FaradayApparatus,AfterGroundingq=0groundattachedAttachingthegroundconnectstheoutersurfacetoanunlimitedsupplyoffreeelectrons,whichthenneutralizethepositivechargelayer.Thenetchargeontheoutersphereisthenthechargeontheinnerlayer,or-Q.FaradayApparatus,AfterGroun4InterpretationoftheFaradayExperimentq=0Faradayconcludedthatthereoccurredacharge“displacement”fromtheinnerspheretotheoutersphere.Displacementinvolvesafloworflux,
existingwithinthedielectric,andwhosemagnitudeisequivalenttotheamountof“displaced”charge.Specifically:InterpretationoftheFaraday5ElectricFluxDensityq=0Thedensityoffluxattheinnerspheresurfaceisequivalenttothedensityofchargethere(inCoul/m2)ElectricFluxDensityq=0The6VectorFieldDescriptionofFluxDensityq=0Avectorfieldisestablishedwhichpointsinthedirectionofthe“flow”ordisplacement.Inthiscase,thedirectionistheoutwardradialdirectioninsphericalcoordinates.Ateachsurface,wewouldhave:VectorFieldDescriptionofFl7Radially-DependentElectricFluxDensityq=0rAtageneralradiusrbetweenspheres,wewouldhave:ExpressedinunitsofCoulombs/m2,anddefinedovertherange(a≤r≤b)D(r)Radially-DependentElectricFl8PointChargeFieldsIfwenowlettheinnersphereradiusreducetoapoint,whilemaintainingthesamecharge,andlettheoutersphereradiusapproachinfinity,wehaveapointcharge.Theelectricfluxdensityisunchanged,butisdefinedoverallspace:C/m2(0<r<∞)Wecomparethistotheelectricfieldintensityinfreespace:V/m(0<r<∞)..andweseethat:PointChargeFieldsIfwenowl9FindingEandDfromChargeDistributionsWelearnedinChapter2that:Itnowfollowsthat:FindingEandDfromChargeDi10Gauss’LawTheelectricfluxpassingthroughanyclosedsurfaceisequaltothetotalchargeenclosedbythatsurfaceGauss’LawTheelectricfluxpa11DevelopmentofGauss’LawWedefinethedifferentialsurfacearea(avector)aswherenistheunitoutwardnormalvectortothesurface,andwheredSistheareaofthedifferentialspotonthesurfaceDevelopmentofGauss’LawWede12MathematicalStatementofGauss’LawLinecharge:Surfacecharge:Volumecharge:inwhichthechargecanexistintheformofpointcharges:Foravolumecharge,wewouldhave:oracontinuouschargedistribution:MathematicalStatementofGaus13UsingGauss’LawtoSolveforD
EvaluatedataSurfaceKnowingQ,weneedtosolveforD,usingGauss’Law:Thesolutioniseasyifwecanchooseasurface,S,overwhichtointegrate(Gaussiansurface)thatsatisfiesthefollowingtwoconditions:Theintegralnowsimplfies:Sothat:whereUsingGauss’LawtoSolvefor14Example:PointChargeFieldBeginwiththeradialfluxdensity:andconsiderasphericalsurfaceofradiusathatsurroundsthecharge,onwhich:Onthesurface,thedifferentialareais:andthis,combinedwiththeoutwardunitnormalvectoris:Example:PointChargeFieldBe15PointChargeApplication(continued)Now,theintegrandbecomes:andtheintegralissetupas:==PointChargeApplication(cont16AnotherExample:LineChargeFieldConsideralinechargeofuniformchargedensityLonthezaxisthatextendsovertherangezWeneedtochooseanappropriateGaussiansurface,beingmindfuloftheseconsiderations:Weknowfromsymmetrythatthefieldwillberadially-directed(normaltothezaxis)incylindricalcoordinates:andthatthefieldwillvarywithradiusonly:Sowechooseacylindricalsurfaceofradius,andoflengthL.AnotherExample:LineChargeF17LineChargeField(continued)Giving:Sothatfinally:LineChargeField(continued)G18AnotherExample:CoaxialTransmissionLineWehavetwoconcentriccylinders,withthezaxisdowntheircenters.SurfacechargeofdensityS
existsontheoutersurfaceoftheinnercylinder.A-directedfieldisexpected,andthisshouldvaryonlywith(likealinecharge).WethereforechooseacylindricalGaussiansurfaceoflengthLandofradius,wherea<<b.ThelefthandsideofGauss’Lawiswritten:…andtherighthandsidebecomes:AnotherExample:CoaxialTran19CoaxialTransmissionLine(continued)Wemaynowsolveforthefluxdensity:andtheelectricfieldintensitybecomes:CoaxialTransmissionLine(con20CoaxialTransmissionLine:ExteriorFieldIfaGaussiancylindricalsurfaceisdrawnoutside(b),atotalchargeofzeroisenclosed,leadingtotheconclusionthator:CoaxialTransmissionLine:Ext21ElectricFluxWithinaDifferentialVolumeElementTakingthefrontsurface,forexample,wehave:ElectricFluxWithinaDiffere22ElectricFluxWithinaDifferentialVolumeElementWenowhave:andinasimilarmanner:Therefore:minussignbecauseDx0isinwardfluxthroughthebacksurface.ElectricFluxWithinaDiffere23ChargeWithinaDifferentialVolumeElementNow,byasimilarprocess,wefindthat:andAllresultsareassembledtoyield:v=Q(byGauss’Law)whereQisthechargeenclosedwithinvolumevChargeWithinaDifferentialV24DivergenceandMaxwell’sFirstEquationMathematically,thisis:Applyingo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 知識點及2025秋期末測試卷(附答案)-蘇少版(2024)初中美術七年級上學期
- (新教材)2026年滬科版七年級下冊數(shù)學 9.3 分式方程 課件
- 臀紅預防的日常護理要點
- 痔瘡患者的社交護理技巧
- 2025年辦公樓外墻施工安全責任合同協(xié)議
- 征求意見稿-醫(yī)療機構(gòu)開展疫苗臨床試驗能力建設規(guī)范
- 高危非致殘性缺血性腦血管事件復發(fā)風險評估和抗栓治療
- 《保護生物的多樣性》同步練習2
- 2025年農(nóng)產(chǎn)品加工企業(yè)發(fā)展策略
- 土壤微生物基因流
- 2025年青島市公安局警務輔助人員招錄筆試考試試題(含答案)
- 科技園區(qū)入駐合作協(xié)議
- 電大??啤秱€人與團隊管理》期末答案排序版
- 山東科技大學《基礎化學(實驗)》2025-2026學年第一學期期末試卷
- 2025西部機場集團航空物流有限公司招聘筆試考試備考試題及答案解析
- 2025年吐魯番輔警招聘考試題庫必考題
- 護理放射科小講課
- 機關黨支部2025年度抓基層黨建工作述職報告
- 2025年生態(tài)環(huán)境監(jiān)測系統(tǒng)建設可行性研究報告及總結(jié)分析
- 2023北京海淀高一(上)期末英語試卷含答案
- 離心泵課件教學課件
評論
0/150
提交評論