版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Prof.S. Projectionontotheprobabilitysimplex.InthisproblemyouwillworkoutasimplemethodforfindingtheEuclideanprojectionyofx∈RnontotheprobabilitysimplexP={z|z0,1Tz=1}.Hints.Considertheproblemofminimizing(1/2)ky?xk22subjecttoy0,1Ty=1.FormthepartialLagrangian2L(y,ν)=(1/2)ky?xk2+ν(1Ty?2leavingtheconstraint 0implicit.Showthaty=(x?ν1)+minimizesL(y,ν) Minimizingexpected umviolation.Weconsidertheproblemofminimizingthe thevariable, subjecttokxk∞≤wherethedataA∈Rm×nandb∈RmareWeconsideraspecificprobleminstancewithm=3andn=3.TheentriesofA 0EA10,Eb1. Solutionviastochasticsubgradient.Useastochasticsubgradientmethodwithstepsize1/ktocomputeasolutionxstoch,startingfromx=0,withM=1theobjectivevalueobtainedbyxstochusingMonteCarlo,withM=1000samples.Plotthedistributionofmax(b?Axstoch)fromthesesamples.(Inthisplot,pointstotheleftof0correspondtonoviolationoftheinequalities.) ummarginheuristic.Theheuristicxmmisobtainedby izingthemarginintheinequalities,withthecoefficientssettotheirexpectedvalues: subjecttokxk∞≤1.UseMonteCarlowithM=1000samplestoestimatetheobjectivevalue(fortheoriginalproblem)obtainedbyxmm,andplotthedistributionofmax(b?Axmm).Directsolutionofsampledproblem.GenerateM=100samplesofAandb,andsolvetheproblemminimize(1/M)subjecttokxk∞≤
max(bi?Thesolutionwillbedenotedxds.UseMonteCarlowithM=1000samplestoestimatetheobjectivevalue(fortheoriginalproblem)obtainedbyxds,andplotthedistributionofmax(b?Axds). =max(min(x,1),-1)toprojectontothe?∞normUsethecvxfunctionpos()togetthepositivepartfunctionTheclearestcodeforcarryingoutMonteCarlo ysisusesaforloop.Inforloopscanbeveryslow,s etheyareinterpreted.Ourfor-loopimplementationofthesolutiontothisproblemisn’ttooslow,butifyoufindMonteCarlorunsslowonyourmachine,youcanusethe methodbelow,tofindtheempiricaldistributionofmax(b?%loop-MonteCarlowith1000samplesofdataAandbM=1000;noise=0.1;Amtx=repmat(Abar,M,1)+2*noise*rand(M*m,n)-noise;bmtx=repmat(bbar,M,1)+2*noise*rand(M*m,1)-%evaluatemax(b-Ax)for1000fvals_stoch=max(reshape(bmtx-Amtx*x_sto,M)SubgradientmethodforinequalityformSDP.DescribehowtoimplementasubgradientmethodtosolvetheinequalityformSDP cTsubject x1A1+···+ Rn, Rn,Sm,Sm.Generateasmallinstanceoftheproblem(say,withn=4andm=10)andsolveitusingyoursubgradientmethod.CheckyoursolutionusingCVX.Kelley’scutting-nealgorithm.Weconsidertheproblemofminimizingaconvexfunctionf:Rn→RoversomeconvexsetC,assumingwecanevaluatef(x)andfindasubgradientg∈?f(x)foranyx.Supposewehaveevaluatedthefunctionandasubgradientatx(1),...,x(k).Wecanformthepiecewise-linearapproximationf?(k)(x)=
f(x(i))+g(i)T(x?x(i))whichsatisfiesf?(k)(x)≤f(x)forallx.ItfollowsL(k)=inff?(k)(x)≤wherep?=infx∈Cf(x).Sef?(k+1)(x)≥f?(k)(x)forallx,wehaveL(k+1)≥InKelley’scutting-nealgorithm,wesetx(k+1)tobeanypointthatminimizesf?(k)overx∈C.ThealgorithmcanbeterminatedwhenU(k)?L(k)≤?,whereU(k)=mini=1,...,kf(x(i)).maxi=1,...,m(aTix+bi)thatwehaveusedforothernumericalexamples,withCtheunitcube,i.e.,C={x|kxk∞≤1}.Thedatathatdefinestheparticularfunctioncanfoundinthedirectoryofthesubgradientnotesonthecoursewebsite.Youcanstartwithx(1)=0andrunthealgorithmfor40itions.Plotf(x(k)),U(k),L(k)andtheconstantp?(onthesameplot)versusk.Repeatforf(x)=kx?ck2,wherecischosenfromauniformdistributionovertheunitcubeC.(Thesolutiontothisproblemis,ofcourse,x?=c.)Minimumvolumeellipsoidcoveringahalf-ellipsoid.Inthisproblemwederivetheupdateformulasusedintheellipsoidmethod,i.e.,wewilldetermheminimumvolumeellipsoidthatcontainstheintersectionoftheellipsoidE={x∈Rn|(x?xc)P?1(x?xc)≤andtheH={x|gT(x?xc)≤We’llassumethatn>1, eforn=1theproblemisWefirstconsideraspecialcase:Eisaballcenteredattheorigin(P=I,xc=0),andg=?e1(e1thefirstunitvector),soE∩H={x|xTx≤1,x1≥0}.?c??1?caboutthelhroughfirstunitvectore1,itisclear(andnottoohardtoshow)thatE?willhavethesamesymmetry.ThismeansthatthematrixP?isdiagonal,oftheformP?=diag(α,β,β,...,β),andthatxc=γe1.Sonowwehaveonlythreevariablestodetermine:α,β,andγ.ExpresstheThensolvetheoptimizationproblemdirectly,toshow α=(n+1)2 β=n2?1 γ=n+toreducethegeneralcasetothespecialcasesolvedinpart(a).Hint.Findanaffransformationthatmapstheoriginalellipsoidtotheunitball,andgto?e1.Exinwhyminimizingthevolumeinthesetransformedcoordinatesalsominimizesthevolumeintheoriginalcoordinates.EE364bS.BoydEE364bxRnP{z|的得投影yz0,1Tz=1}提示??紤]最小化(1/2)y的問(wèn)題。x22服從y0,1Ty=1。形成偏日L(y,ν)=(1/2)y。x22+ν(1Ty.1),y0y=(xν1y0L(y,ν最小化Emax(b滿足x1A?Rm×nb?Rmm3n3Ab(且獨(dú)立0.11009/10EA11/20Eb1.10111291/kxx0,每次迭代M=1個(gè)次梯度樣本。運(yùn)行算法5000次迭代。使用估計(jì)xstoch獲得M1000max(bAxstoch)(在此圖中,0左側(cè)的點(diǎn)對(duì)應(yīng)于不違反不等式。)最小化最大值(EbEx11使用M=1000個(gè)樣本的來(lái)估計(jì)xmm獲得的目標(biāo)值(針對(duì)原始問(wèn)題),并繪制max(bAxmm)AbM100M1/M)i=1max(bi.Aix)+且x1≤1。該解決方案將表示為xds。使用M=1000個(gè)樣本的來(lái)估計(jì)xds獲得的目標(biāo)值(針對(duì)原始問(wèn)題),并繪制max(b.Axds)的分布。xmax(min(x,110.1使用cvx函數(shù)pos()得到正部分函數(shù)()+。執(zhí)行分析的最清晰的代碼使用for循環(huán)。在中,for循環(huán)可能非常慢,因?yàn)樗鼈兪潜唤忉尩?。我們解決這個(gè)問(wèn)題的for循環(huán)實(shí)現(xiàn)并不太慢,但是如果您發(fā)現(xiàn)在您的計(jì)算機(jī)上運(yùn)行緩慢,您可以使用下面所示的無(wú)循環(huán)方法來(lái)查找max(b.斧頭)。無(wú)循環(huán),具有1000個(gè)數(shù)據(jù)A和b樣本M=1000;噪聲=0.1;Amtx=repmat(Abar,M,1)2*噪聲*rand(M*m,n)bmtxrepmat(bbar,M,12**rand(M*m,1)1000max(bAxfvals_stochmax(-Amtx*x_sto,M)SDPSDPcTxx1A1·xnAnB的不等式,x?Rnc?RnA1,...,An?SmB?Sm生成問(wèn)題的一個(gè)小實(shí)例(例如,n4m10)CVXCfRnR評(píng)估f(x)并找到任何x的次梯度g∈.f(x)。假設(shè)我們已經(jīng)評(píng)估了函數(shù)并且1)x,xf.(k
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽2025年安徽壽縣退役士兵扶持就業(yè)專項(xiàng)崗位人員招聘61人筆試歷年參考題庫(kù)附帶答案詳解
- 寧波浙江寧波市鄞州區(qū)人力資源和社會(huì)保障局下屬事業(yè)單位編外人員招聘筆試歷年參考題庫(kù)附帶答案詳解
- 寧德2025年福建寧德柘榮一中等學(xué)校招聘12人筆試歷年參考題庫(kù)附帶答案詳解
- 威海2025年山東威海乳山市面向村(社區(qū))黨組織書(shū)記招聘事業(yè)單位工作人員筆試歷年參考題庫(kù)附帶答案詳解
- 天津2025年天津市農(nóng)業(yè)科學(xué)院招聘工作人員(第二輪)筆試歷年參考題庫(kù)附帶答案詳解
- 大連2025年遼寧大連醫(yī)科大學(xué)附屬第三醫(yī)院暨大醫(yī)二院普灣院區(qū)招聘筆試歷年參考題庫(kù)附帶答案詳解
- 嘉興浙江嘉興海關(guān)綜合技術(shù)服務(wù)中心實(shí)驗(yàn)室招聘筆試歷年參考題庫(kù)附帶答案詳解
- office 考試試題及答案
- 整裝閉口合同范本3篇
- 仙桃2025年湖北仙桃市衛(wèi)生健康委從本系統(tǒng)三支一扶服務(wù)期滿人員中聘用筆試歷年參考題庫(kù)附帶答案詳解
- 2024年廣東省佛山市南海區(qū)道路建設(shè)管理處招聘公益一類(lèi)事業(yè)編制人員3人歷年管理單位遴選500模擬題附帶答案詳解
- 動(dòng)物輔助療法行業(yè)研究報(bào)告
- 模塊化軟件質(zhì)量保證
- 人教版七年級(jí)語(yǔ)文上冊(cè)《課內(nèi)文言文基礎(chǔ)知識(shí) 》專項(xiàng)測(cè)試卷及答案
- 砌筑工中級(jí)理論考核試題題庫(kù)及答案
- 【關(guān)于構(gòu)建我國(guó)個(gè)人破產(chǎn)制度的探討(論文)16000字】
- DL∕T 1631-2016 并網(wǎng)風(fēng)電場(chǎng)繼電保護(hù)配置及整定技術(shù)規(guī)范
- JT-T-155-2021汽車(chē)舉升機(jī)行業(yè)標(biāo)準(zhǔn)
- 加固專業(yè)承包合同
- 國(guó)家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 5-01-05-01 中藥材種植員 人社廳發(fā)200994號(hào)
- 年終食堂工作總結(jié)
評(píng)論
0/150
提交評(píng)論