版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版八年級數(shù)學(xué)上冊12.3.1角的平分線的性質(zhì)1.探究并證明角的平分線的判定.2.會用角的平分線的判定解決實際問題.3.熟練掌握角的平分線的性質(zhì)和角的平分線的判定的綜合運用.學(xué)習(xí)目標其身正,不令而行;其身不正,雖令不從角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等.幾何表示:如圖,∵OC是∠AOB的平分線,點P是OC上一點,PD⊥OA,PE⊥OB,垂足分別為D,E.∴PD=PE.OABCPDE┐┐知識回顧思考:如圖,要在S區(qū)建一個集貿(mào)市場,使它到公路、鐵路的距離相等,并且離公路與鐵路的交叉處500m.這個集貿(mào)市場應(yīng)建于何處?課堂導(dǎo)入其身正,不令而行;其身不正,雖令不從作出公路和鐵路相交的角的平分線,按照比例尺的比例在該平分線上選取離交叉口處500m的位置即可建集貿(mào)市場.
到角的兩邊的距離相等的點是否在角的平分線上?
課堂導(dǎo)入其身正,不令而行;其身不正,雖令不從┐角的平分線的判定定理:角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上.
注意:使用該判定定理的前提是這個點必須在角的內(nèi)部.OABCPDE┐知識點1角的平分線的判定新知探究其身正,不令而行;其身不正,雖令不從探究一:角的平分線的作法請同學(xué)們拿出準備好的角,用你自己的方法畫出它的角平分線,然后與大家交流分享.其身正,不令而行;其身不正,雖令不從探究一:角的平分線的作法如圖是一個平分角的儀器,其中AB=AD,BC=DC.將點A放在角的頂點,AB和AD沿著角的兩邊放下,畫一條射線AE,AE就是∠DAB的平分線.你能說明它的道理嗎?ADBCADBCEE(1)角平分儀由什么構(gòu)成?(2)角平分儀如何使用?(3)∠DAC和∠BAC相等
的依據(jù)是什么?思考:其身正,不令而行;其身不正,雖令不從
理由如下:如圖構(gòu)成了△ADC和△ABC,∵在△ADC和△ABC中,AD=AB,
AC=AC,
DC=BC,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC.
∵點C在射線AE上,
∴AE是這個角的平分線.
ADBCE如圖是一個平分角的儀器,其中AB=AD,BC=DC.將點A放在角的頂點,AB和AD沿著角的兩邊放下,畫一條射線AE,AE就是∠DAB的平分線.你能說明它的道理嗎?原理:兩個三角形全等,則對應(yīng)角相等。其身正,不令而行;其身不正,雖令不從ABOMNC作法:
用尺規(guī)作角的平分線
其身正,不令而行;其身不正,雖令不從探究一:角的平分線的作法思考:1.在上面作法的第二步中,去掉“大于
的長”這個條件行嗎?2.第二步中所作的兩弧交點一定在∠MAN的內(nèi)部嗎?總結(jié):1.去掉“大于
的長”這個條件,所作的兩弧可能沒有交點,所以就找不到角的平分線.2.若分別以B、D為圓心,大于
的長為半徑畫兩弧,兩弧的交點可能在∠MAN的內(nèi)部,也可能在∠MAN的外部,而我們要找的是∠MAN內(nèi)部的交點,否則兩弧交點與頂點連線得到的射線就不是∠MAN的平分線了.其身正,不令而行;其身不正,雖令不從講
授
新
知一
用尺規(guī)作角的平分線你能說明為什么射線OC是∠AOB的平分線嗎?ABONMC在△OMC和△ONC中,OM=ON,MC=NC,∴△OMC≌△ONC(SSS)OC=OC,∴∠MOC≌∠NOC射線OC是∠AOB的平分線其身正,不令而行;其身不正,雖令不從講
授
新
知思考:如圖所示.任意作一個角∠AOB,作出∠AOB的平分線OC,在上任取一點P,過點P畫出OA,OB的垂線,分別記垂足為點D.E,測量PD、PE并作比較,你得到什么結(jié)論?在OC上再取幾個點試一試,通過以上測量,你發(fā)現(xiàn)了角的平分線的什么性質(zhì)?二
發(fā)現(xiàn)并證明角的平分線的性質(zhì).ABOCEPDPD=PE角的平分線上的點到角的兩邊的距離相等.其身正,不令而行;其身不正,雖令不從講
授
新
知你能通過嚴格的邏輯推理證明這個結(jié)論嗎?二
發(fā)現(xiàn)并證明角的平分線的性質(zhì).(1)你能把“角的平分線上的點到角的兩邊的距離相等”.寫成“如果……那么……”的形式嗎?(2)題目中是否有隱含的條件?(3)能否畫出圖形,用符號語言寫出已知和求證?(1)如果一個點在角的平分線上,那么這個點到角的兩邊的距離相等。(2)垂直。其身正,不令而行;其身不正,雖令不從講
授
新
知已知:∠AOC=∠BOC,點P在OC上,PD⊥OA,PE⊥證:PD=PE.二
發(fā)現(xiàn)并證明角的平分線的性質(zhì).ABOCEPD在△OPD和△OPE中,OP=OP,∠AOC=∠BOC,∴△OPD≌△OPE(AAS)∠ODP=∠OEP,∴PD=PE.其身正,不令而行;其身不正,雖令不從例題:如圖,△ABC中,∠C=90°,AD是△ABC的角平分線,DE⊥AB于E,F(xiàn)在AC上,BD=DF,求證:CF=EB。變式一:上述已知條件不變,若DC=3,AB=10,求△ADB的面積.變式二:上述已知條件不變,若S△ABC=36,AB=10,AC=8,求DC的長.其身正,不令而行;其身不正,雖令不從例題:如圖,△ABC中,∠C=90°,AD是△ABC的角平分線,DE⊥AB于E,F(xiàn)在AC上,BD=DF,求證:CF=EB。證明:∵∠C=90°
∴DC⊥AC∵AD平分∠CAB,DE⊥AB,∴DC=DE(角的平分線上的點
到角的兩邊的距離相等)在Rt△CDF和Rt△EDB中,DC=DEDF=DB∴Rt△CDF≌Rt△EDB(HL)∴CF=EB(全等三角形對應(yīng)邊相等)變式一:上述已知條件不變,若DC=3,AB=10,求△ADB的面積.變式二:上述已知條件不變,若S△ABC=36,AB=10,AC=8,求DC的長.其身正,不令而行;其身不正,雖令不從鞏固練習(xí)1.如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB
于E,有下列結(jié)論:①CD=ED;②DA平分∠CDE;③∠BDE=∠BAC;④AC+BE=AB;其中結(jié)論正確的有
。EDCBA藍玉解答紅玉補充2.如圖,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,DE⊥AB于E,AB=10cm,則△DEB的周長為
cm。EDCBA鞏固練習(xí)紫玉解答其身正,不令而行;其身不正,雖令不從3.如圖,∠ACB=∠DEB=90,BD平分∠ABC,ED的延長線交BC的延長線與F。求證:AE=CFEDCBAF鞏固練習(xí)藍玉解答紅玉補充其身正,不令而行;其身不正,雖令不從探究二:角的平分線的性質(zhì)下面四個圖中,點P都在∠AOB的平分線上,則圖形()中PD=PE.ABCD【思路點撥】利用角平分線的性質(zhì)時,非常重要的條件是PD和PE是到角兩邊的距離.D【解答過程】選項A中如果增加一個條件OD=OE,就能得出PD=PE;選項B和C中PD不是到OA的距離;選項D中P到OA和OB的距離為PD和PE.練一練:其身正,不令而行;其身不正,雖令不從探究三:用角的平分線的性質(zhì)解決簡單問題【思路點撥】證CF和EA所在的兩個三角形全等.證明:例:如圖,ABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,F(xiàn)在BC上,AD=DF.求證:CF=EA∵∠C=90°,BD平分∠ABC,DE⊥AB于E,∴DC=DE又∵AD=DF∴
DCF≌
DEA(HL)∴CF=EA其身正,不令而行;其身不正,雖令不從探究三:用角的平分線的性質(zhì)解決簡單問題練習(xí):如圖,CD⊥AB于點D,BE⊥AC于點E,BE,CD交于點O,且AO平分∠BAC,求證:OB=OC.【思路點撥】利用角平分線的性質(zhì)可得OD=OE,證明
BOD≌
COE可得OB=OC.證明:∵CD⊥AB,BE⊥AC,AO平分∠BAC,∴OD=OE,∠BDO=∠CEO=90°.∵∠BOD=∠COE,∴BOD≌
COE.(AAS)∴OB=OC.其身正,不令而行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院錄入員考試題及答案
- 導(dǎo)醫(yī)崗前培訓(xùn)試題及答案
- 初中化學(xué)試題解釋及答案
- 九江市贛北勞動保障事務(wù)代理所招聘勞務(wù)派遣制員工參考題庫必考題
- 北京保障房中心有限公司面向社會招聘法律管理崗1人備考題庫必考題
- 北川縣2025年機關(guān)事業(yè)單位縣內(nèi)公開考調(diào)工作人員(8人)考試備考題庫必考題
- 合江縣2025年下半年公開考調(diào)事業(yè)單位工作人員的備考題庫必考題
- 招38人!興海縣公安局2025年招聘警務(wù)輔助人員參考題庫必考題
- 江西省水務(wù)集團有限公司2025年第三批社會招聘【34人】備考題庫附答案
- 眉山市發(fā)展和改革委員會關(guān)于市項目工作推進中心公開選調(diào)事業(yè)人員的備考題庫附答案
- 環(huán)境應(yīng)急培訓(xùn)課件
- 2026年大連雙D高科產(chǎn)業(yè)發(fā)展有限公司公開選聘備考題庫及答案詳解(奪冠系列)
- 2026河南鄭州信息工程職業(yè)學(xué)院招聘67人參考題庫含答案
- 團隊建設(shè)與協(xié)作能力提升工作坊指南
- 客房清掃流程培訓(xùn)課件
- 醫(yī)療機構(gòu)藥品配送服務(wù)評價體系
- 醫(yī)療資源合理分配
- 婦科微創(chuàng)術(shù)后護理新進展
- 幼兒園大蝦課件
- 2025新疆能源(集團)有限責(zé)任公司共享中心招聘備考題庫(2人)帶答案詳解(完整版)
- 2025至2030中國超純水(UPW)系統(tǒng)行業(yè)項目調(diào)研及市場前景預(yù)測評估報告
評論
0/150
提交評論