山西省臨汾市曲沃縣2024屆中考聯考數學試題含解析_第1頁
山西省臨汾市曲沃縣2024屆中考聯考數學試題含解析_第2頁
山西省臨汾市曲沃縣2024屆中考聯考數學試題含解析_第3頁
山西省臨汾市曲沃縣2024屆中考聯考數學試題含解析_第4頁
山西省臨汾市曲沃縣2024屆中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省臨汾市曲沃縣2024屆中考聯考數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數是()A.1 B.2 C.3 D.42.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.3.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y64.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.5.一元二次方程x2﹣3x+1=0的根的情況()A.有兩個相等的實數根 B.有兩個不相等的實數根C.沒有實數根 D.以上答案都不對6.如圖,將△ABC繞點C順時針旋轉90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數是A.55° B.60° C.65° D.70°7.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.38.某區(qū)10名學生參加市級漢字聽寫大賽,他們得分情況如上表:那么這10名學生所得分數的平均數和眾數分別是()人數3421分數80859095A.85和82.5 B.85.5和85 C.85和85 D.85.5和809.下列四個圖案中,不是軸對稱圖案的是()A. B. C. D.10.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數為()A.62° B.38° C.28° D.26°二、填空題(本大題共6個小題,每小題3分,共18分)11.不等式組的解集為_____.12.已知x+y=,xy=,則x2y+xy2的值為____.13.已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45o.則圖中陰影部分的面積是____________.14.如圖,將一塊含有30°角的直角三角板的兩個頂點疊放在長方形的兩條對邊上,如果∠1=27°,那么∠2=______°15.分解因式=________,=__________.16.在線段AB上,點C把線段AB分成兩條線段AC和BC,如果,那么點C叫做線段AB的黃金分割點.若點P是線段MN的黃金分割點,當MN=1時,PM的長是_____.三、解答題(共8題,共72分)17.(8分)某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數恰好與用360元購買甲種樹苗的棵數相同.求甲、乙兩種樹苗每棵的價格各是多少元?在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?18.(8分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數式表示PM的長;在(2)的條件下,連結PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.19.(8分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,求證:AF=DC;若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.20.(8分)平面直角坐標系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標.21.(8分)計算:﹣14﹣2×(﹣3)2+÷(﹣)如圖,小林將矩形紙片ABCD沿折痕EF翻折,使點C、D分別落在點M、N的位置,發(fā)現∠EFM=2∠BFM,求∠EFC的度數.22.(10分)在邊長為1的5×5的方格中,有一個四邊形OABC,以O點為位似中心,作一個四邊形,使得所作四邊形與四邊形OABC位似,且該四邊形的各個頂點都在格點上;求出你所作的四邊形的面積.23.(12分)學校為了提高學生跳遠科目的成績,對全校500名九年級學生開展了為期一個月的跳遠科目強化訓練。王老師為了了解學生的訓練情況,強化訓練前,隨機抽取了該年級部分學生進行跳遠測試,經過一個月的強化訓練后,再次測得這部分學生的跳遠成績,將兩次測得的成績制作成圖所示的統計圖和不完整的統計表(滿分10分,得分均為整數).根據以上信息回答下列問題:訓練后學生成績統計表中n,并補充完成下表:若跳遠成績9分及以上為優(yōu)秀,估計該校九年級學生訓練后比訓練前達到優(yōu)秀的人數增加了多少?經調查,經過訓練后得到9分的五名同學中,有三名男生和兩名女生,王老師要從這五名同學中隨機抽取兩名同學寫出訓練報告,請用列表或畫樹狀圖的方法,求所抽取的兩名同學恰好是一男一女的概率.24.一只不透明的袋子中裝有4個質地、大小均相同的小球,這些小球分別標有3,4,5,x,甲,乙兩人每次同時從袋中各隨機取出1個小球,并計算2個小球上的數字之和.記錄后將小球放回袋中攪勻,進行重復試驗,試驗數據如下表:摸球總次數1020306090120180240330450“和為8”出現的頻數210132430375882110150“和為8”出現的頻率0.200.500.430.400.330.310.320.340.330.33解答下列問題:如果試驗繼續(xù)進行下去,根據上表提供的數據,出現和為8的頻率將穩(wěn)定在它的概率附近,估計出現和為8的概率是________;如果摸出的2個小球上數字之和為9的概率是,那么x的值可以為7嗎?為什么?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【題目詳解】①∵拋物線對稱軸是y軸的右側,∴ab<0,∵與y軸交于負半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故③正確;④當x=﹣1時,y>0,∴a﹣b+c>0,故④正確.故選D.【題目點撥】本題主要考查了圖象與二次函數系數之間的關系,二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數確定.2、A【解題分析】

根據從正面看得到的圖形是主視圖,可得答案.【題目詳解】解:從正面看第一層是三個小正方形,第二層中間有一個小正方形,

故選:A.【題目點撥】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖.3、D【解題分析】

根據合并同類項的法則,積的乘方,完全平方公式,同底數冪的乘法的性質,對各選項分析判斷后利用排除法求解.【題目詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【題目點撥】考查了整式的運算能力,對于相關的整式運算法則要求學生很熟練,才能正確求出結果.4、D【解題分析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.5、B【解題分析】

首先確定a=1,b=-3,c=1,然后求出△=b2-4ac的值,進而作出判斷.【題目詳解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0兩個不相等的實數根;故選B.【題目點撥】此題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數;(3)△<0?方程沒有實數根.6、C【解題分析】

根據旋轉的性質和三角形內角和解答即可.【題目詳解】∵將△ABC繞點C順時針旋轉90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【題目點撥】此題考查旋轉的性質,關鍵是根據旋轉的性質和三角形內角和解答.7、D【解題分析】

直接利用提取公因式法以及冪的乘方運算法則將原式變形進而得出答案.【題目詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【題目點撥】此題主要考查了冪的乘方運算,正確將原式變形是解題關鍵.8、B【解題分析】

根據眾數及平均數的定義,即可得出答案.【題目詳解】解:這組數據中85出現的次數最多,故眾數是85;平均數=(80×3+85×4+90×2+95×1)=85.5.故選:B.【題目點撥】本題考查了眾數及平均數的知識,掌握各部分的概念是解題關鍵.9、B【解題分析】

根據軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【題目詳解】A、是軸對稱圖形,故本選項錯誤;B、不是軸對稱圖形,故本選項正確;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選:B.【題目點撥】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關鍵.10、C【解題分析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質.注意:根據斜邊和直角邊對應相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣2≤x<【解題分析】

根據解不等式的步驟從而得到答案.【題目詳解】,解不等式①可得:x≥-2,解不等式②可得:x<,故答案為-2≤x<.【題目點撥】本題主要考查了解不等式,解本題的要點在于分別求解①,②不等式,從而得到答案.12、3【解題分析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.13、(-)cm2【解題分析】S陰影=S扇形-S△OBD=52-×5×5=.故答案是:.14、57°.【解題分析】

根據平行線的性質和三角形外角的性質即可求解.【題目詳解】由平行線性質及外角定理,可得∠2=∠1+30°=27°+30°=57°.【題目點撥】本題考查平行線的性質及三角形外角的性質.15、【解題分析】此題考查因式分解答案點評:利用提公因式、平方差公式、完全平方公式分解因式16、【解題分析】

設PM=x,根據黃金分割的概念列出比例式,計算即可.【題目詳解】設PM=x,則PN=1-x,

由得,,

化簡得:x2+x-1=0,

解得:x1=,x2=(負值舍去),

所以PM的長為.【題目點撥】本題考查的是黃金分割的概念和性質,把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項,叫做把線段AB黃金分割.三、解答題(共8題,共72分)17、(1)甲種樹苗每棵的價格是30元,乙種樹苗每棵的價格是40元;(2)他們最多可購買11棵乙種樹苗.【解題分析】

(1)可設甲種樹苗每棵的價格是x元,則乙種樹苗每棵的價格是(x+10)元,根據等量關系:用480元購買乙種樹苗的棵數恰好與用360元購買甲種樹苗的棵數相同,列出方程求解即可;(2)可設他們可購買y棵乙種樹苗,根據不等關系:再次購買兩種樹苗的總費用不超過1500元,列出不等式求解即可.【題目詳解】(1)設甲種樹苗每棵的價格是x元,則乙種樹苗每棵的價格是(x+10)元,依題意有480x+10解得:x=30,經檢驗,x=30是原方程的解,x+10=30+10=40,答:甲種樹苗每棵的價格是30元,乙種樹苗每棵的價格是40元;(2)設他們可購買y棵乙種樹苗,依題意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11713∵y為整數,∴y最大為11,答:他們最多可購買11棵乙種樹苗.【題目點撥】本題考查了分式方程的應用,一元一次不等式的應用,弄清題意,找準等量關系與不等關系列出方程或不等式是解決問題的關鍵.18、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.【解題分析】

(1)將A(3,0),C(0,4)代入,運用待定系數法即可求出拋物線的解析式.(2)先根據A、C的坐標,用待定系數法求出直線AC的解析式,從而根據拋物線和直線AC的解析式分別表示出點P、點M的坐標,即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F和E對應,則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數式表示出AE、EM、CF、PF的長,根據相似三角形對應邊的比相等列出比例式,求出m的值,再根據相似三角形的性質,直角三角形、等腰三角形的判定判斷出△PCM的形狀.【題目詳解】解:(1)∵拋物線(a≠0)經過點A(3,0),點C(0,4),∴,解得.∴拋物線的解析式為.(2)設直線AC的解析式為y=kx+b,∵A(3,0),點C(0,4),∴,解得.∴直線AC的解析式為.∵點M的橫坐標為m,點M在AC上,∴M點的坐標為(m,).∵點P的橫坐標為m,點P在拋物線上,∴點P的坐標為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.19、(1)見解析(2)見解析【解題分析】

(1)根據AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據直角三角形斜邊上中線性質得出CD=AD,根據菱形的判定推出即可.【題目詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形20、(1)(1,4)(2)(0,)或(0,-1)【解題分析】試題分析:(1)先求得點C的坐標,再由OA=OC得到點A的坐標,再根據拋物線的對稱性得到點B的坐標,利用待定系數法求得解析式后再進行配方即可得到頂點坐標;(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情況進行討論即可得.試題解析:(1)當x=0時,拋物線y=ax2+bx+3=3,所以點C坐標為(0,3),∴OC=3,∵OA=OC,∴OA=3,∴A(3,0),∵A、B關于x=1對稱,∴B(-1,0),∵A、B在拋物線y=ax2+bx+3上,∴,∴,∴拋物線解析式為:y=-x2+2x+3=-(x-1)2+4,∴頂點P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,∵OC//PM,∴∠PMC=∠MCO,∴tan∠PMC=tan∠MCO==;(3)Q在C點的下方,∠BCQ=∠CMP,CM=,PM=4,BC=,∴或,∴CQ=或4,∴Q1(0,),Q2(0,-1).21、(1)﹣10;(2)∠EFC=72°.【解題分析】

(1)原式利用乘方的意義,立方根定義,乘除法則及家減法法則計算即可;(2)根據折疊的性質得到一對角相等,再由已知角的關系求出結果即可.【題目詳解】(1)原式=﹣1﹣18+9=﹣10;(2)由折疊得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴設∠EFM=∠EFC=x,則有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+x=180°,解得:x=72°,則∠EFC=72°.【題目點撥】本題考查了實數的性質及平行線的性質,解題的關鍵是熟練掌握實數的運算法則及平行線的性質.22、(1)如圖所示,見解析;四邊形OA′B′C′即為所求;(2)S四邊形OA′B′C′=1.【解題分析】

(1)結合網格特點,分別作出點A、B、C關于點O成位似變換的對應點,再順次連接即可得;(2)根據S四邊形O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論