人教版九年級(jí)數(shù)學(xué)第二十四章《圓》單元知識(shí)點(diǎn)總結(jié)_第1頁(yè)
人教版九年級(jí)數(shù)學(xué)第二十四章《圓》單元知識(shí)點(diǎn)總結(jié)_第2頁(yè)
人教版九年級(jí)數(shù)學(xué)第二十四章《圓》單元知識(shí)點(diǎn)總結(jié)_第3頁(yè)
人教版九年級(jí)數(shù)學(xué)第二十四章《圓》單元知識(shí)點(diǎn)總結(jié)_第4頁(yè)
人教版九年級(jí)數(shù)學(xué)第二十四章《圓》單元知識(shí)點(diǎn)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版九年級(jí)數(shù)學(xué)第二十四章《圓》單元知識(shí)點(diǎn)總結(jié)1.弦弦:連結(jié)圓上任意兩點(diǎn)的線段叫做弦.直徑:經(jīng)過(guò)圓心的弦叫做直徑.弦心距:圓心到弦的距離叫做弦心距.弧:圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧.以A、B為端點(diǎn)的弧記作,讀作“圓弧AB”或“弧AB”.

①半圓:圓的任意一條直徑的兩個(gè)端點(diǎn)把圓分成兩條弧,每一條弧都叫做半圓;

②優(yōu)?。捍笥诎雸A的弧叫做優(yōu)?。虎哿踊。盒∮诎雸A的弧叫做劣弧.3.同心圓與等圓

圓心相同,半徑不等的兩個(gè)圓叫做同心圓.

圓心不同,半徑相等的兩個(gè)圓叫做等圓.同圓或等圓的半徑相等.4.等弧

在同圓或等圓中,能夠完全重合的弧叫做等弧.5、弧、弦、圓心角的關(guān)系

(1)圓心角定義

如圖所示,∠AOB的頂點(diǎn)在圓心,像這樣頂點(diǎn)在圓心的角叫做圓心角.

(2)定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等.

推論:

在同圓或等圓中,如果兩條弧相等,那么它們所對(duì)的圓心角相等,所對(duì)的弦也相等.

在同圓或等圓中,如果兩條弦相等,那么它們所對(duì)的圓心角相等,所對(duì)的弧也相等.6、圓周角(1)圓周角定義:像圖中∠AEB、∠ADB、∠ACB這樣的角,它們的頂點(diǎn)在圓上,并且兩邊都與圓相交的角叫做圓周角.(2).圓周角定理:

在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.(3).圓周角定理的推論:

半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.要點(diǎn)詮釋?zhuān)?/p>

(1)圓周角必須滿足兩個(gè)條件:①頂點(diǎn)在圓上;②角的兩邊都和圓相交.

(2)圓周角定理成立的前提條件是在同圓或等圓中.7.圓內(nèi)接四邊形:(1)定義:圓內(nèi)接四邊形:頂點(diǎn)都在圓上的四邊形,叫圓內(nèi)接四邊形.(2)性質(zhì):圓內(nèi)接四邊形對(duì)角互補(bǔ),外角等于內(nèi)對(duì)角(即它的一個(gè)外角等于它相鄰內(nèi)角的對(duì)角).8.弦、弧、圓心角、弦心距的關(guān)系:在同圓或等圓中,弦,弧,圓心角,弦心距等幾何量之間是相互關(guān)聯(lián)的,即它們中間只要有一組量相等,(例如圓心角相等),那么其它各組量也分別相等(即相對(duì)應(yīng)的弦、弦心距以及弦所對(duì)的弧也分別相等)。9、垂徑定理(1)垂徑定理

垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧.(2).推論

平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧.要點(diǎn)詮釋?zhuān)?/p>

(1)垂徑定理是由兩個(gè)條件推出兩個(gè)結(jié)論,即

(2)這里的直徑也可以是半徑,也可以是過(guò)圓心的直線或線段.(3)、垂徑定理的拓展根據(jù)圓的對(duì)稱(chēng)性及垂徑定理還有如下結(jié)論:①平分弦(該弦不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條??;②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條??;③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧.10、點(diǎn)和圓的位置關(guān)系

(1)點(diǎn)和圓的三種位置關(guān)系:由于平面上圓的存在,就把平面上的點(diǎn)分成了三個(gè)集合,即圓內(nèi)的點(diǎn),圓上的點(diǎn)和圓外的點(diǎn),這三類(lèi)點(diǎn)各具有相同的性質(zhì)和判定方法;設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離為d,則有

11、直線和圓的位置關(guān)系直線和圓的三種位置關(guān)系:

①相交:直線與圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交.這時(shí)直線叫做圓的割線.

②相切:直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切.這時(shí)直線叫做圓的切線,唯一的公共點(diǎn)叫做切點(diǎn).③相離:直線和圓沒(méi)有公共點(diǎn)時(shí),叫做直線和圓相離.(2)直線與圓的位置關(guān)系的判定和性質(zhì).

由于圓心確定圓的位置,半徑確定圓的大小,因此研究直線和圓的位置關(guān)系,就可以轉(zhuǎn)化為直線和點(diǎn)(圓心)的位置關(guān)系.圖(1)中直線與圓心的距離小于半徑;圖(2)中直線與圓心的距離等于半徑;圖(3)中直線與圓心的距離大于半徑.

如果⊙O的半徑為r,圓心O到直線的距離為d,那么

12、切線的判定定理、性質(zhì)定理和切線長(zhǎng)定理(1)切線的判定定理:

經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線.(2)切線的判定方法:①定義:直線和圓有唯一公共點(diǎn)時(shí),這條直線就是圓的切線;②定理:和圓心的距離等于半徑的直線是圓的切線;③判定定理:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線.(切線的判定定理中強(qiáng)調(diào)兩點(diǎn):一是直線與圓有一個(gè)交點(diǎn),二是直線與過(guò)交點(diǎn)的半徑垂直,缺一不可).

13、切線的性質(zhì)定理:圓的切線垂直于過(guò)切點(diǎn)的半徑.切線的性質(zhì):(1)切線和圓只有一個(gè)公共點(diǎn);(2)切線和圓心的距離等于圓的半徑;(3)切線垂直于過(guò)切點(diǎn)的半徑;(4)經(jīng)過(guò)圓心垂直于切線的直線必過(guò)切點(diǎn);(5)經(jīng)過(guò)切點(diǎn)垂直于切線的直線必過(guò)圓心.

14.切線長(zhǎng):

經(jīng)過(guò)圓外一點(diǎn)作圓的切線,這點(diǎn)和切點(diǎn)之間的線段的長(zhǎng),叫做這點(diǎn)到圓的切線長(zhǎng).(切線長(zhǎng)是指圓外一點(diǎn)和切點(diǎn)之間的線段的長(zhǎng),不是“切線的長(zhǎng)”的簡(jiǎn)稱(chēng).切線是直線,而非線段.15、切線長(zhǎng)定理:

從圓外一點(diǎn)可以引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角.(切線長(zhǎng)定理包含兩個(gè)結(jié)論:線段相等和角相等.)

16.三角形的外接圓經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓.外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心.三角形的外心到三角形三個(gè)頂點(diǎn)的距離相等.(不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓.)17、三角形的內(nèi)切圓:

與三角形各邊都相切的圓叫做三角形的內(nèi)切圓.

三角形內(nèi)切圓的圓心是三角形三條角平分線的交點(diǎn),叫做三角形的內(nèi)心.三角形的內(nèi)心到三邊的距離都相等.

要點(diǎn)詮釋?zhuān)?/p>

(1)任何一個(gè)三角形都有且只有一個(gè)內(nèi)切圓,但任意一個(gè)圓都有無(wú)數(shù)個(gè)外切三角形;

(2)解決三角形內(nèi)心的有關(guān)問(wèn)題時(shí),面積法是常用的,即三角形的面積等于周長(zhǎng)與內(nèi)切圓半徑乘積的一半,即(S為三角形的面積,P為三角形的周長(zhǎng),r為內(nèi)切圓的半徑).

(3)三角形的外心與內(nèi)心的區(qū)別:名稱(chēng)確定方法圖形性質(zhì)外心(三角形外接圓的圓心)三角形三邊中垂線的交點(diǎn)(1)到三角形三個(gè)頂點(diǎn)的距離相等,即OA=OB=OC;(2)外心不一定在三角形內(nèi)部?jī)?nèi)心(三角形內(nèi)切圓的圓心)三角形三條角平分線的交點(diǎn)(1)到三角形三邊距離相等;(2)OA、OB、OC分別平分∠BAC、∠ABC、∠ACB;(3)內(nèi)心在三角形內(nèi)部.

18、圓和圓的位置關(guān)系

(1)圓與圓的五種位置關(guān)系的定義

兩圓外離:兩個(gè)圓沒(méi)有公共點(diǎn),且每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓外離.兩圓外切:兩個(gè)圓有唯一公共點(diǎn),并且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓外切.這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).兩圓相交:兩個(gè)圓有兩個(gè)公共點(diǎn)時(shí),叫做這兩圓相交.

兩圓內(nèi)切:兩個(gè)圓有唯一公共點(diǎn),并且除了這個(gè)公共點(diǎn)外,一個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓內(nèi)切.這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).

兩圓內(nèi)含:兩個(gè)圓沒(méi)有公共點(diǎn),且一個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓內(nèi)含.

兩圓的位置與兩圓的半徑、圓心距間的數(shù)量關(guān)系:設(shè)⊙O1的半徑為r1,⊙O2半徑為r2,兩圓心O1O2的距離為d,則:兩圓外離d>r1+r2兩圓外切d=r1+r2兩圓相交r1-r2<d<r1+r2(r1≥r2)兩圓內(nèi)切d=r1-r2(r1>r2)兩圓內(nèi)含d<r1-r2(r1>r2)

正多邊形和圓(1)正多邊形:各邊相等,各角也相等的多邊形是正多邊形。2、正多邊形的外接圓:一個(gè)正多邊形的各個(gè)頂點(diǎn)都在圓上,我們就說(shuō)這個(gè)圓是這個(gè)正多邊形的外接圓。把一個(gè)正多邊形的外接圓的圓心叫做這個(gè)正多邊形的中心,外接圓的半徑叫做這個(gè)正多邊形的半徑,正多邊形每一邊所對(duì)的圓心角叫做正多邊形的中心角,中心到正多邊形的一邊的距離叫做正多邊形的邊心距。(2)、20、弧長(zhǎng)公式

半徑為R的圓中

360°的圓心角所對(duì)的弧長(zhǎng)(圓的周長(zhǎng))公式:

n°的圓心角所對(duì)的圓的弧長(zhǎng)公式:(弧是圓的一部分)

21、扇形面積公式

(1)扇形的定義

由組成圓心角的兩條半徑和圓心

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論