九電能和電功同步測試題2024屆中考五模數學試題含解析_第1頁
九電能和電功同步測試題2024屆中考五模數學試題含解析_第2頁
九電能和電功同步測試題2024屆中考五模數學試題含解析_第3頁
九電能和電功同步測試題2024屆中考五模數學試題含解析_第4頁
九電能和電功同步測試題2024屆中考五模數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

九電能和電功同步測試題2024年中考五模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若ab<0,則正比例函數y=ax與反比例函數y=在同一坐標系中的大致圖象可能是()A. B. C. D.2.化簡的結果是()A. B. C. D.3.計算(﹣3)﹣(﹣6)的結果等于()A.3B.﹣3C.9D.184.如圖,A、B兩點在雙曲線y=上,分別經過A、B兩點向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.65.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-26.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對7.函數(為常數)的圖像上有三點,,,則函數值的大小關系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y18.已知圓內接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.9.八邊形的內角和為()A.180° B.360° C.1080° D.1440°10.如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,,,于點H,且DH與AC交于G,則OG長度為A. B. C. D.11.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B(yǎng).中秋節(jié)的晚上一定能看到月亮C.打開電視機,正在播少兒節(jié)目D.小紅今年14歲,她一定是初中學生12.下列運算正確的是()A.5ab﹣ab=4 B.a6÷a2=a4 C. D.(a2b)3=a5b3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一元二次方程x(x﹣2)=x﹣2的根是_____.14.計算的結果是__________.15.李明早上騎自行車上學,中途因道路施工推車步行了一段路,到學校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學校的路程是2900米,設他推車步行的時間為x分鐘,那么可列出的方程是_____________.16.已知圖中的兩個三角形全等,則∠1等于____________.17.已知一個等腰三角形的兩邊長分別為2和4,則該等腰三角形的周長是.18.如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號是(把你認為正確的都填上).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)閱讀下列材料,解答下列問題:材料1.把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個變形過程,那么多項式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對于二次三項式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對于一般的二次三項式,就不能直接應用完全平方了,我們可以在二次三項式中先加上一項,使其配成完全平方式,再減去這項,使整個式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數學解題中常見的一種思想方法,請你解答下列問題:(1)根據材料1,把c2﹣6c+8分解因式;(2)結合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.20.(6分)解不等式組并寫出它的整數解.21.(6分)在平面直角坐標系中,二次函數y=ax2+bx+2的圖象與x軸交于A(﹣4,0),B(1,0)兩點,與y軸交于點C.(1)求這個二次函數的解析式;(2)連接AC、BC,判斷△ABC的形狀,并證明;(3)若點P為二次函數對稱軸上點,求出使△PBC周長最小時,點P的坐標.22.(8分)如圖1,在平面直角坐標系xOy中,拋物線y=ax2+bx﹣與x軸交于點A(1,0)和點B(﹣3,0).繞點A旋轉的直線l:y=kx+b1交拋物線于另一點D,交y軸于點C.(1)求拋物線的函數表達式;(2)當點D在第二象限且滿足CD=5AC時,求直線l的解析式;(3)在(2)的條件下,點E為直線l下方拋物線上的一點,直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對稱軸上有一點P,其縱坐標為4,點Q在拋物線上,當直線l與y軸的交點C位于y軸負半軸時,是否存在以點A,D,P,Q為頂點的平行四邊形?若存在,請直接寫出點D的橫坐標;若不存在,請說明理由.23.(8分)計算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.24.(10分)如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα=角α的鄰邊角(1)如圖1,若BC=3,AB=5,則ctanB=_____;(2)ctan60°=_____;(3)如圖2,已知:△ABC中,∠B是銳角,ctanC=2,AB=10,BC=20,試求∠B的余弦cosB的值.25.(10分)某校為了創(chuàng)建書香校遠,計劃進一批圖書,經了解.文學書的單價比科普書的單價少20元,用800元購進的文學書本數與用1200元購進的科普書本數相等.文學書和科普書的單價分別是多少元?該校計劃用不超過5000元的費用購進一批文學書和科普書,問購進60本文學書后最多還能購進多少本科普書?26.(12分)如圖所示,在中,,用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)連接AP當為多少度時,AP平分.27.(12分)某化工材料經銷公司購進一種化工材料若干千克,價格為每千克40元,物價部門規(guī)定其銷售單價不高于每千克70元,不低于每千克40元.經市場調查發(fā)現,日銷量y(千克)是銷售單價x(元)的一次函數,且當x=70時,y=80;x=60時,y=1.在銷售過程中,每天還要支付其他費用350元.求y與x的函數關系式,并寫出自變量x的取值范圍;求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數關系式;當銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】

根據ab<0及正比例函數與反比例函數圖象的特點,可以從a>0,b<0和a<0,b>0兩方面分類討論得出答案.【題目詳解】解:∵ab<0,∴分兩種情況:(1)當a>0,b<0時,正比例函數y=ax數的圖象過原點、第一、三象限,反比例函數圖象在第二、四象限,無此選項;(2)當a<0,b>0時,正比例函數的圖象過原點、第二、四象限,反比例函數圖象在第一、三象限,選項D符合.故選D【題目點撥】本題主要考查了反比例函數的圖象性質和正比例函數的圖象性質,要掌握它們的性質才能靈活解題.2、D【解題分析】

將除法變?yōu)槌朔ǎ喍胃?,再用乘法分配律展開計算即可.【題目詳解】原式=×=×(+1)=2+.故選D.【題目點撥】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.3、A【解題分析】原式=?3+6=3,故選A4、D【解題分析】

欲求S1+S1,只要求出過A、B兩點向x軸、y軸作垂線段與坐標軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數k,由此即可求出S1+S1.【題目詳解】∵點A、B是雙曲線y=上的點,分別經過A、B兩點向x軸、y軸作垂線段,

則根據反比例函數的圖象的性質得兩個矩形的面積都等于|k|=4,

∴S1+S1=4+4-1×1=2.

故選D.5、A【解題分析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點:解一元二次方程-因式分解法.6、C【解題分析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.7、A【解題分析】試題解析:∵函數y=(a為常數)中,-a1-1<0,∴函數圖象的兩個分支分別在二、四象限,在每一象限內y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.8、B【解題分析】

根據題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質得AD=3x,利用銳角三角函數表示出BD的長,由垂徑定理表示出BC的長,然后根據面積法解答即可.【題目詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內接正三邊形的邊心距為1,故選B.【題目點撥】本題考查正多邊形和圓,三角形重心的性質,垂徑定理,銳角三角函數,面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.9、C【解題分析】試題分析:根據n邊形的內角和公式(n-2)×180o可得八邊形的內角和為(8-2)×180o=1080o,故答案選C.考點:n邊形的內角和公式.10、B【解題分析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.11、A【解題分析】

必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,依據定義即可求解.【題目詳解】解:B、C、D選項為不確定事件,即隨機事件.故錯誤;

一定發(fā)生的事件只有第一個答案,早晨的太陽一定從東方升起.故選A.【題目點撥】該題考查的是對必然事件的概念的理解;必然事件就是一定發(fā)生的事件.12、B【解題分析】

根據同底數冪的除法,合并同類項,積的乘方的運算法則進行逐一運算即可.【題目詳解】解:A、5ab﹣=4ab,此選項運算錯誤,B、a6÷a2=a4,此選項運算正確,C、,選項運算錯誤,D、(a2b)3=a6b3,此選項運算錯誤,故選B.【題目點撥】此題考查了同底數冪的除法,合并同類項,積的乘方,熟練掌握運算法則是解本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1或1【解題分析】

移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可得答案.【題目詳解】x(x﹣1)=x﹣1,x(x﹣1)﹣(x﹣1)=0,(x﹣1)(x﹣1)=0,x﹣1=0,x﹣1=0,x1=1,x1=1,故答案為:1或1.【題目點撥】本題考查了解一元二次方程的應用,能把一元二次方程轉化成一元一次方程是解此題的關鍵.14、1【解題分析】分析:利用同分母分式的減法法則計算,分子整理后分解因式,約分即可得到結果.詳解:原式故答案為:1.點睛:本題考查了分式的加減運算,分式的加減運算關鍵是通分,通分的關鍵是找最簡公分母.15、【解題分析】分析:根據題意把李明步行和騎車各自所走路程表達出來,再結合步行和騎車所走總里程為2900米,列出方程即可.詳解:設他推車步行的時間為x分鐘,根據題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關鍵.16、58°【解題分析】如圖,∠2=180°?50°?72°=58°,∵兩個三角形全等,∴∠1=∠2=58°.故答案為58°.17、1.【解題分析】試題分析:因為2+2<4,所以等腰三角形的腰的長度是4,底邊長2,周長:4+4+2=1,答:它的周長是1,故答案為1.考點:等腰三角形的性質;三角形三邊關系.18、①②④【解題分析】分析:∵四邊形ABCD是正方形,∴AB=AD。∵△AEF是等邊三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)?!郆E=DF?!連C=DC,∴BC﹣BE=CD﹣DF?!郈E=CF。∴①說法正確?!逤E=CF,∴△ECF是等腰直角三角形?!唷螩EF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②說法正確。如圖,連接AC,交EF于G點,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG?!郆E+DF≠EF?!啖壅f法錯誤?!逧F=2,∴CE=CF=。設正方形的邊長為a,在Rt△ADF中,,解得,∴?!唷!啖苷f法正確。綜上所述,正確的序號是①②④。三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).【解題分析】

(1)根據材料1,可以對c2-6c+8分解因式;(2)①根據材料2的整體思想可以對(a-b)2+2(a-b)+1分解因式;②根據材料1和材料2可以對(m+n)(m+n-4)+3分解因式.【題目詳解】(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3+1)=(c-4)(c-2);(2)①(a-b)2+2(a-b)+1設a-b=t,則原式=t2+2t+1=(t+1)2,則(a-b)2+2(a-b)+1=(a-b+1)2;②(m+n)(m+n-4)+3設m+n=t,則t(t-4)+3=t2-4t+3=t2-4t+22-22+3=(t-2)2-1=(t-2+1)(t-2-1)=(t-1)(t-3),則(m+n)(m+n-4)+3=(m+n-1)(m+n-3).【題目點撥】本題考查因式分解的應用,解題的關鍵是明確題意,可以根據材料中的例子對所求的式子進行因式分解.20、不等式組的解集是5<x≤1,整數解是6,1【解題分析】

先分別求出兩個不等式的解,求出解集,再根據整數的定義得到答案.【題目詳解】∵解①得:x>5,解不等式②得:x≤1,∴不等式組的解集是5<x≤1,∴不等式組的整數解是6,1.【題目點撥】本題考查求一元一次不等式組,解題的關鍵是掌握求一元一次不等式組的方法21、(1)拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形,理由見解析;(3)當P點坐標為(﹣,)時,△PBC周長最小【解題分析】

(1)設交點式y(tǒng)=a(x+4)(x-1),展開得到-4a=2,然后求出a即可得到拋物線解析式;

(2)先利用兩點間的距離公式計算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判斷△ABC為直角三角形;

(3)拋物線的對稱軸為直線x=-,連接AC交直線x=-于P點,如圖,利用兩點之間線段最短得到PB+PC的值最小,則△PBC周長最小,接著利用待定系數法求出直線AC的解析式為y=x+2,然后進行自變量為-所對應的函數值即可得到P點坐標.【題目詳解】(1)拋物線的解析式為y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形.理由如下:當x=0時,y=﹣x2﹣x+2=2,則C(0,2),∵A(﹣4,0),B(1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC為直角三角形,∠ACB=90°;(3)拋物線的對稱軸為直線x=﹣,連接AC交直線x=﹣于P點,如圖,∵PA=PB,∴PB+PC=PA+PC=AC,∴此時PB+PC的值最小,△PBC周長最小,設直線AC的解析式為y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直線AC的解析式為y=x+2,當x=﹣時,y=x+2=,則P(﹣,)∴當P點坐標為(﹣,)時,△PBC周長最?。绢}目點撥】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化解.關于x的一元二次方程即可求得交點橫坐標.也考查了待定系數法求二次函數解析式和最短路徑問題.22、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當x=﹣2時,最大值為;(4)存在,點D的橫坐標為﹣3或或﹣.【解題分析】

(1)設二次函數的表達式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當AP為平行四邊形的一條邊、對角線兩種情況,分別求解即可.【題目詳解】(1)設二次函數的表達式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數的表達式為:①;(2)過點D作DF⊥x軸交于點F,過點E作y軸的平行線交直線AD于點M,∵OC∥DF,∴OF=5OA=5,故點D的坐標為(﹣5,6),將點A、D的坐標代入一次函數表達式:y=mx+n得:,解得:即直線AD的表達式為:y=﹣x+1,(3)設點E坐標為則點M坐標為則∵故S△ACE有最大值,當x=﹣2時,最大值為;(4)存在,理由:①當AP為平行四邊形的一條邊時,如下圖,設點D的坐標為將點A向左平移2個單位、向上平移4個單位到達點P的位置,同樣把點D左平移2個單位、向上平移4個單位到達點Q的位置,則點Q的坐標為將點Q的坐標代入①式并解得:②當AP為平行四邊形的對角線時,如下圖,設點Q坐標為點D的坐標為(m,n),AP中點的坐標為(0,2),該點也是DQ的中點,則:即:將點D坐標代入①式并解得:故點D的橫坐標為:或或.【題目點撥】本題考查的是二次函數綜合運用,涉及到圖形平移、平行四邊形的性質等,關鍵是(4)中,用圖形平移的方法求解點的坐標,本題難度大.23、【解題分析】分析:按照實數的運算順序進行運算即可.詳解:原式點睛:本題考查實數的運算,主要考查零次冪,負整數指數冪,特殊角的三角函數值以及二次根式,熟練掌握各個知識點是解題的關鍵.24、(1);(2);(3).【解題分析】試題分析:(1)先利用勾股定理計算出AC=4,然后根據余切的定義求解;(2)根據余切的定義得到ctan60°=,然后把tan60°=代入計算即可;(3)作AH⊥BC于H,如圖2,先在Rt△ACH中利用余切的定義得到ctanC==2,則可設AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接著再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根據余弦的定義求解.解:(1)∵BC=3,AB=5,∴AC==4,∴ctanB==;(2)ctan60°===;(3)作AH⊥BC于H,如圖2,在Rt△ACH中,ctanC==2,設AH=x,則CH=2x,∴BH=BC﹣CH=20﹣2x,在Rt△ABH中,∵BH2+AH2=AB2,∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),∴BH=20﹣2×6=8,∴cosB===.考點:解直角三角形.25、(1)文學書的單價為40元/本,科普書的單價為1元/本;(2)購進1本文學書后最多還能購進2本科普書.【解題分析】

(1)設文學書的單價為x元/本,則科普書的單價為(x+20)元/本,根據數量=總價÷單價結合用800元購進的文學書本數與用1200元購進的科普書本數相等,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設購進m本科普書,根據總價=文學書的單價×購進本數+科普書的單價×購進本數結合總價不超過5000元,即可得出關于m的一元一次不等式,解之取其中的最大整數值即可得出結論.【題目詳解】解:(1)設文學書的單價為x元/本,則科普書的單價為(x+20)元/本,依題意,得:800x解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x+20=1.答:文學書的單價為40元/本,科普書的單價為1元/本.(2)設購進m本科普書,依題意,得:40×1+1m≤5000,解得:m≤431∵m為整數,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論