2023-2024學年云南省丘北縣第二中學高三數學第一學期期末質量檢測模擬試題含解析_第1頁
2023-2024學年云南省丘北縣第二中學高三數學第一學期期末質量檢測模擬試題含解析_第2頁
2023-2024學年云南省丘北縣第二中學高三數學第一學期期末質量檢測模擬試題含解析_第3頁
2023-2024學年云南省丘北縣第二中學高三數學第一學期期末質量檢測模擬試題含解析_第4頁
2023-2024學年云南省丘北縣第二中學高三數學第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年云南省丘北縣第二中學高三數學第一學期期末質量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數的取值范圍為A. B. C. D.2.復數,若復數在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.3.若,,,則下列結論正確的是()A. B. C. D.4.已知函數,其中,記函數滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.5.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數組成的—個階方陣,其各行各列及兩條對角線所含的個數之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.456.命題“”的否定是()A. B.C. D.7.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.8.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.9.已知的內角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.10.關于函數,有下述三個結論:①函數的一個周期為;②函數在上單調遞增;③函數的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③11.如圖所示的程序框圖,若輸入,,則輸出的結果是()A. B. C. D.12.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則__________.14.某中學高一年級有學生1200人,高二年級有學生900人,高三年級有學生1500人,現按年級用分層抽樣的方法從這三個年級的學生中抽取一個容量為720的樣本進行某項研究,則應從高三年級學生中抽取_____人.15.為了了解一批產品的長度(單位:毫米)情況,現抽取容量為400的樣本進行檢測,如圖是檢測結果的頻率分布直方圖,根據產品標準,單件產品長度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數為__________.16.已知變量(m>0),且,若恒成立,則m的最大值________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數,().(1)若曲線在點處的切線方程為,求實數a、m的值;(2)若對任意恒成立,求實數a的取值范圍;(3)關于x的方程能否有三個不同的實根?證明你的結論.18.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名,下面是根據調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據已知條件完成下面的列聯(lián)表,并據此資料你是否認為“體育迷”與性別有關?非體育迷體育迷合計男女1055合計(2)將上述調查所得到的頻率視為概率.現在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數為X.若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63519.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設為的中點,且,的平分線交于點,求線段的長.20.(12分)某商店舉行促銷反饋活動,顧客購物每滿200元,有一次抽獎機會(即滿200元可以抽獎一次,滿400元可以抽獎兩次,依次類推).抽獎的規(guī)則如下:在一個不透明口袋中裝有編號分別為1,2,3,4,5的5個完全相同的小球,顧客每次從口袋中摸出一個小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號一次比一次大(如1,2,5),則獲得一等獎,獎金40元;若摸得的小球編號一次比一次?。ㄈ?,3,1),則獲得二等獎,獎金20元;其余情況獲得三等獎,獎金10元.(1)某人抽獎一次,求其獲獎金額X的概率分布和數學期望;(2)趙四購物恰好滿600元,假設他不放棄每次抽獎機會,求他獲得的獎金恰好為60元的概率.21.(12分)已知是遞增的等比數列,,且、、成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,,求數列的前項和.22.(10分)定義:若數列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數列”.(1)為“﹣數列”中的任意三項,則使得的取法有多少種?(2)為“﹣數列”中的任意三項,則存在多少正整數對使得且的概率為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

因為,,所以根據正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數的取值范圍為,故選C.2、A【解析】

先通過復數在復平面內對應的點關于虛軸對稱,得到,再利用復數的除法求解.【詳解】因為復數在復平面內對應的點關于虛軸對稱,且復數,所以所以故選:A【點睛】本題主要考查復數的基本運算和幾何意義,屬于基礎題.3、D【解析】

根據指數函數的性質,取得的取值范圍,即可求解,得到答案.【詳解】由指數函數的性質,可得,即,又由,所以.故選:D.【點睛】本題主要考查了指數冪的比較大小,其中解答中熟記指數函數的性質,求得的取值范圍是解答的關鍵,著重考查了計算能力,屬于基礎題.4、D【解析】

由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.5、B【解析】

計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數列前項和公式,屬于基礎題.6、D【解析】

根據全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.7、D【解析】

建立平面直角坐標系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【詳解】將拋物線放入坐標系,如圖所示,∵,,,∴,設拋物線,代入點,可得∴焦點為,即焦點為中點,設焦點為,,,∴.故選:D【點睛】本小題考查圓錐曲線的概念,拋物線的性質,兩點間的距離等基礎知識;考查運算求解能力,空間想象能力,推理論證能力,應用意識.8、D【解析】

設,利用余弦定理,結合雙曲線的定義進行求解即可.【詳解】設,由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應用,考查了余弦定理的應用,考查了雙曲線的漸近線方程,考查了數學運算能力.9、C【解析】

由,化簡得到的值,根據余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當且僅當時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數式的化簡,余弦定理,以及基本不等式的綜合應用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.10、C【解析】

①用周期函數的定義驗證.②當時,,,再利用單調性判斷.③根據平移變換,函數的值域等價于函數的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調遞增,故②正確;函數的值域等價于函數的值域,易知,故當時,,故③正確.故選:C.【點睛】本題考查三角函數的性質,還考查推理論證能力以及分類討論思想,屬于中檔題.11、B【解析】

列舉出循環(huán)的每一步,可得出輸出結果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎題.12、B【解析】

先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

直接根據集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎題.14、1.【解析】

先求得高三學生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學生占的比例為,所以應從高三年級學生中抽取的人數為.【點睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.15、100.【解析】分析:根據頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數.詳解:由題意得,三等品的長度在區(qū)間,和內,根據頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數為.點睛:頻率分布直方圖的縱坐標為,因此每一個小矩形的面積表示樣本個體落在該區(qū)間內的頻率,把小矩形的高視為頻率時常犯的錯誤.16、【解析】

在不等式兩邊同時取對數,然后構造函數f(x)=,求函數的導數,研究函數的單調性即可得到結論.【詳解】不等式兩邊同時取對數得,即x2lnx1<x1lnx2,又即成立,設f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數f(x)在(0,m)上為增函數,函數的導數,由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【點睛】本題考查函數單調性與導數之間的應用,根據條件利用取對數得到不等式,從而可構造新函數,是解決本題的關鍵三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2);(3)不能,證明見解析【解析】

(1)求出,結合導數的幾何意義即可求解;(2)構造,則原題等價于對任意恒成立,即時,,利用導數求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調性;(3)構造并進行求導,研究單調性,結合函數零點存在性定理證明即可.【詳解】(1),,曲線在點處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當時,對任意,,,,,即在單調遞增,此時,實數的取值范圍為.(3)關于的方程不可能有三個不同的實根,以下給出證明:記,,則關于的方程有三個不同的實根,等價于函數有三個零點,,當時,,記,則,在單調遞增,,即,,在單調遞增,至多有一個零點;當時,記,則,在單調遞增,即在單調遞增,至多有一個零點,則至多有兩個單調區(qū)間,至多有兩個零點.因此,不可能有三個零點.關于的方程不可能有三個不同的實根.【點睛】本題考查了導數幾何意義的應用、利用導數研究函數單調性以及函數的零點存在性定理,考查了轉化與化歸的數學思想,屬于難題.18、(1)無關;(2),.【解析】

(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計男301545女451055合計7525100將22列聯(lián)表中的數據代入公式計算,得.因為3.030<3.841,所以我們沒有充分理由認為“體育迷”與性別有關.(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=19、(1),;(2).【解析】

(1)根據面積公式和數量積性質求角及最大邊;(2)根據的長度求出,再根據面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因為在中,,所以,因為(當且僅當時取等),所以長的最小值為;(2)在三角形中,因為為中線,所以,,所以,因為,所以,所以,由(1)知,所以,或,,所以,因為為角平分線,,,或2,所以,或,所以.【點睛】本題考查了平面向量數量積的性質及其運算,余弦定理解三角形及三角形面積公式的應用,屬于中檔題.20、(1)分布見解析,期望為;(2).【解析】

(1)先明確X的可能取值,分別求解其概率,然后寫出分布列,利用期望公式可求期望;(2)獲得的獎金恰好為60元,可能是三次二等獎,也可能是一次一等獎,兩次三等獎,然后分別求解概率即可.【詳解】(1)由題意知,隨機變量X的可能取值為10,20,40且,,所以,即隨機變量X的概率分布為X102040P所以隨機變量X的數學期望.(2)由題意知,趙四有三次抽獎機會,設恰好獲得60元為事件A,因為60=20×3=40+10+10,所以.【點睛】本題主要考查隨機變量的分布列及數學期望,明確隨機變量的所有取值是求解的第一步,再求解對應的概率,側重考查數學建模的核心素養(yǎng).21、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)設等比數列的公比為,根據題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論