2024屆廣東省深圳市2009-高三數(shù)學試題綜合試卷(15)數(shù)學試題_第1頁
2024屆廣東省深圳市2009-高三數(shù)學試題綜合試卷(15)數(shù)學試題_第2頁
2024屆廣東省深圳市2009-高三數(shù)學試題綜合試卷(15)數(shù)學試題_第3頁
2024屆廣東省深圳市2009-高三數(shù)學試題綜合試卷(15)數(shù)學試題_第4頁
2024屆廣東省深圳市2009-高三數(shù)學試題綜合試卷(15)數(shù)學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省深圳市2009-高三數(shù)學試題綜合試卷(15)數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,,,點C在AB上,且,設,則的值為()A. B. C. D.2.曲線在點處的切線方程為()A. B. C. D.3.設,則()A. B. C. D.4.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙5.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.6.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.7.設等差數(shù)列的前項和為,若,則()A.23 B.25 C.28 D.298.設復數(shù)滿足,則()A. B. C. D.9.在直角中,,,,若,則()A. B. C. D.10.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.11.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.12.若雙曲線:的一條漸近線方程為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的單調增區(qū)間為__________.14.已知為橢圓內一定點,經(jīng)過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.15.在中,已知是的中點,且,點滿足,則的取值范圍是_______.16.已知集合,其中,.且,則集合中所有元素的和為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線交曲線于兩點,為中點.(1)求曲線的直角坐標方程和點的軌跡的極坐標方程;(2)若,求的值.18.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅持開展愛國衛(wèi)生運動,從人居環(huán)境改善、飲食習慣、社會心理健康、公共衛(wèi)生設施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習,提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調查,隨機收集了該區(qū)居民六類日常生活習慣的有關數(shù)據(jù).六類習慣是:(1)衛(wèi)生習慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習慣良好頻率0.60.90.80.70.650.6假設每份調查問卷只調查上述六類狀況之一,各類調查是否達到良好標準相互獨立.(1)從小組收集的有效答卷中隨機選取1份,求這份試卷的調查結果是膳食合理狀況類中習慣良好者的概率;(2)從該區(qū)任選一位居民,試估計他在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣的概率;(3)利用上述六類習慣調查的排序,用“”表示任選一位第k類受訪者是習慣良好者,“”表示任選一位第k類受訪者不是習慣良好者().寫出方差,,,,,的大小關系.19.(12分)我國在貴州省平塘縣境內修建的500米口徑球面射電望遠鏡(FAST)是目前世界上最大單口徑射電望遠鏡.使用三年來,已發(fā)現(xiàn)132顆優(yōu)質的脈沖星候選體,其中有93顆已被確認為新發(fā)現(xiàn)的脈沖星,脈沖星是上世紀60年代天文學的四大發(fā)現(xiàn)之一,脈沖星就是正在快速自轉的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構觀測并統(tǒng)計了93顆已被確認為新發(fā)現(xiàn)的脈沖星的自轉周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發(fā)現(xiàn)的脈沖星中,自轉周期在2至10秒的大約有多少顆?(2)根據(jù)頻率分布直方圖,求新發(fā)現(xiàn)脈沖星自轉周期的平均值.20.(12分)P是圓上的動點,P點在x軸上的射影是D,點M滿足.(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.21.(12分)某生物硏究小組準備探究某地區(qū)蜻蜓的翼長分布規(guī)律,據(jù)統(tǒng)計該地區(qū)蜻蜓有兩種,且這兩種的個體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機變量,其中服從正態(tài)分布,服從正態(tài)分布.(Ⅰ)從該地區(qū)的蜻蜓中隨機捕捉一只,求這只蜻蜓的翼長在區(qū)間的概率;(Ⅱ)記該地區(qū)蜻蜓的翼長為隨機變量,若用正態(tài)分布來近似描述的分布,請你根據(jù)(Ⅰ)中的結果,求參數(shù)和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區(qū)的蜻蜓中隨機捕捉3只,記這3只中翼長在區(qū)間的個數(shù)為,求的分布列及數(shù)學期望(分布列寫出計算表達式即可).注:若,則,,.22.(10分)設,函數(shù).(1)當時,求在內的極值;(2)設函數(shù),當有兩個極值點時,總有,求實數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

利用向量的數(shù)量積運算即可算出.【題目詳解】解:,,又在上,故選:【題目點撥】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.2、A【解題分析】

將點代入解析式確定參數(shù)值,結合導數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【題目詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數(shù)可得,由導數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.【題目點撥】本題考查了導數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎題.3、D【解題分析】

結合指數(shù)函數(shù)及對數(shù)函數(shù)的單調性,可判斷出,,,即可選出答案.【題目詳解】由,即,又,即,,即,所以.故選:D.【題目點撥】本題考查了幾個數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調性的應用,屬于基礎題.4、A【解題分析】

利用逐一驗證的方法進行求解.【題目詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.【題目點撥】本題將數(shù)學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.5、B【解題分析】

根據(jù)指數(shù)函數(shù)的單調性,結合特殊值進行辨析.【題目詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當m,n時,檢驗可得,A、C、D都不正確,故選:B.【題目點撥】此題考查根據(jù)指數(shù)冪的大小關系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或對數(shù)的大小關系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質,結合特值法得出選項.6、C【解題分析】

利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程?!绢}目詳解】設,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【題目點撥】本題考查雙曲線幾何性質、漸近線方程求解,考查數(shù)形結合思想,考查邏輯推理能力和運算求解能力。7、D【解題分析】

由可求,再求公差,再求解即可.【題目詳解】解:是等差數(shù)列,又,公差為,,故選:D【題目點撥】考查等差數(shù)列的有關性質、運算求解能力和推理論證能力,是基礎題.8、D【解題分析】

根據(jù)復數(shù)運算,即可容易求得結果.【題目詳解】.故選:D.【題目點撥】本題考查復數(shù)的四則運算,屬基礎題.9、C【解題分析】

在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數(shù)量積的定義和性質:向量的平方即為模的平方,化簡計算即可得到所求值.【題目詳解】在直角中,,,,,

,

若,則故選C.【題目點撥】本題考查向量的加減運算和數(shù)量積的定義和性質,主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.10、B【解題分析】

首先由三視圖還原幾何體,進一步求出幾何體的棱長.【題目詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【題目點撥】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎題.11、C【解題分析】

根據(jù)拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.12、A【解題分析】

根據(jù)雙曲線的漸近線列方程,解方程求得的值.【題目詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【題目點撥】本小題主要考查雙曲線的漸近線,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

先求出導數(shù),再在定義域上考慮導數(shù)的符號為正時對應的的集合,從而可得函數(shù)的單調增區(qū)間.【題目詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調增區(qū)間為:.故答案為:.【題目點撥】本題考查導數(shù)在函數(shù)單調性中的應用,注意先考慮函數(shù)的定義域,再考慮導數(shù)在定義域上的符號,本題屬于基礎題.14、【解題分析】

設弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【題目詳解】設弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【題目點撥】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設而不求法來解答,考查計算能力,屬于中等題.15、【解題分析】

由中點公式的向量形式可得,即有,設,有,再分別討論三點共線和不共線時的情況,找到的關系,即可根據(jù)函數(shù)知識求出范圍.【題目詳解】是的中點,∴,即設,于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【題目點撥】本題主要考查學中點公式的向量形式和數(shù)量積的定義的應用,以及余弦定理的應用,涉及到函數(shù)思想和分類討論思想的應用,解題關鍵是建立函數(shù)關系式,屬于中檔題.16、2889【解題分析】

先計算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【題目詳解】當時,集合中最小數(shù);當時,得到集合中最大的數(shù);故答案為:2889【題目點撥】本題考查了數(shù)列與集合綜合,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)或【解題分析】

(1)根據(jù)曲線的參數(shù)方程消去參數(shù),可得曲線的直角坐標方程,再由,,可得點的軌跡的極坐標方程;(2)將曲線極坐標方程求,與直線極坐標方程聯(lián)立,消去,得到關于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【題目詳解】(1)曲線的直角坐標方程為,圓的圓心為,設,所以,則由,即為點軌跡的極坐標方程.(2)曲線的極坐標方程為,將與曲線的極坐標方程聯(lián)立得,,設,所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【題目點撥】此題考查參數(shù)方程與普通方程的互化,極坐標方程與直角坐標方程的互化,利用極坐標求點的軌跡方程,考查運算求解能力,考查數(shù)形結合思想,屬于中檔題.18、(1)(2)(3)【解題分析】

(1)設“選取的試卷的調查結果是膳食合理狀況類中習慣良好者“的事件為,根據(jù)古典概型求出即可;(2)設該區(qū)“衛(wèi)生習慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設事件為“該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣“,則(E),求出即可;(3)根據(jù)題意,寫出即可.【題目詳解】(1)設“選取的試卷的調查結果是膳食合理狀況類中習慣良好者“的事件為,有效問卷共有(份,其中受訪者中膳食合理習慣良好的人數(shù)是人,故(A);(2)設該區(qū)“衛(wèi)生習慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,根據(jù)題意,可知(A),(B),(C),設事件為“該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣“則.所以該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣至少具備2個良好習慣的概率為0.766.(3).【題目點撥】本題考查了古典概型求概率,獨立性事件,互斥性事件求概率等,考查運算能力和事件應用能力,中檔題.19、(1)79顆;(2)5.5秒.【解題分析】

(1)利用各小矩形的面積和為1可得,進而得到脈沖星自轉周期在2至10秒的頻率,從而得到頻數(shù);(2)平均值的估計值為各小矩形組中值與頻率的乘積的和得到.【題目詳解】(1)第一到第六組的頻率依次為0.1,0.2,0.3,0.2,,0.05,其和為1所以,,所以,自轉周期在2至10秒的大約有(顆).(2)新發(fā)現(xiàn)的脈沖星自轉周期平均值為(秒).故新發(fā)現(xiàn)的脈沖星自轉周期平均值為5.5秒.【題目點撥】本題考查頻率分布直方圖的應用,涉及到平均數(shù)的估計值等知識,是一道容易題.20、(1)點M的軌跡C的方程為,軌跡C是以,為焦點,長軸長為4的橢圓(2)【解題分析】

(1)設,根據(jù)可求得,代入圓的方程可得所求軌跡方程;根據(jù)軌跡方程可知軌跡是以,為焦點,長軸長為的橢圓;(2)設,與橢圓方程聯(lián)立,利用求得;利用韋達定理表示出與,根據(jù)平行四邊形和向量的坐標運算求得,消去后得到軌跡方程;根據(jù)求得的取值范圍,進而得到最終結果.【題目詳解】(1)設,則由知:點在圓上點的軌跡的方程為:軌跡是以,為焦點,長軸長為的橢圓(2)設,由題意知的斜率存在設,代入得:則,解得:設,,則四邊形為平行四邊形又∴,消去得:頂點的軌跡方程為【題目點撥】本題考查圓錐曲線中的軌跡方程的求解問題,關鍵是能夠利用已知中所給的等量關系建立起動點橫縱坐標滿足的關系式,進而通過化簡整理得到結果;易錯點是求得軌跡方程后,忽略的取值范圍.21、(Ⅰ);(Ⅱ),;(Ⅲ)詳見解析.【解題分析】

(Ⅰ)由題知這只蜻蜓是種還是種的可能性是相等的,所以,代入數(shù)值運算即可;(Ⅱ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論