版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Table
of
contentsDriving
forces
of
6G
native
AI1236G
native
AI
architecture
designand
key
features6G
and
Foundation
Model2Demand
for
Ubiquitous
IntelligenceAI
has
become
the
core
driving
force
for
a
new
round
of
industrial
transformation.
Theautomation,
digitalization
and
intelligence
of
the
industry
require
ubiquitous
intelligence.NetworkautonomyneedsAICustomersneedAIBusinessneedsAIOperation
&
maintenance
Emergency
communicationMedical
RecognitionSecurity
monitorVoiceprint
recognitionMachine
translationSmart
NavigationPersonalized
Recommend.Robot
rescueSmart
ManufacturingSmart
coverageCustomized
networkThe
integration
of
6G
and
AI
includes
two
aspects:
"AI
for
Networks"and
“Networks
for
AI"3The
Driving
Force
of
AI
for
NetworksMobile
communication
technology
faces
bottlenecks,
requiring
urgent
technological
innovation
andinterdisciplinary
integration.
AI
is
a
key
solution
for
enhancing
network
performance.Traditional
communication
systems
faceperformance
bottlenecks6G
poses
more
challenging
demandmetricsairinterfaceMore
accurate
channelinformationMore
precise
positioningEnhanced
interferencecancellation
capabilitiesEnhanced
energy
efficiency,spectral
capacityConflicts
arise
between
network
operationefficiency,
complexity,
and
costnetworkImproved
scene
adaptationspeedCurrent
technology
falls
short
ofmeeting
6G's
needsnetwork
operation
and
maintenance
efficiencyDifficulty
in
estimating
larger
scaleMIMO
channelsMore
balanced
trafficschedulingDense
base
station
deployment
leadsto
increased
interferenceFaster
networkinginterference
avoidanceMore
complex
system
designs
lead
toincreased
energy
consumptioncontradictorytriangleMore
refined
businessidentificationComplex
routing
in
heterogeneousequipment
networksnetworkcostMore
accurate
fault
locationDiverse
communication
scenariorequirements
are
fragmentedcomplexity4The
Driving
Force
of
Networks
for
AIITU
extends
6G
scenarios
to
ubiquitous
intelligence.
AI
needs
to
be
transformed
into
new
capabilitiesand
services
for
6G
communication
networks
to
achieve
AIaaS6G
network
inherently
providesITU
extends
6G
scenarios
to
ubiquitous
intelligenceAI
services5GGet
AI
anytime,
anywherecommunicationservicecommunicationabilityLow
latency
AIinference/trainingSupport
mobile
AI6Gcommunication
computingAI
service
qualityassurance+abilityabilityAIserviceperceptionability
dataabilityAImodelabilityAI
security
and
privacy
protection5Challenges
in
the
Integration
of
5G
Networks
and
AIFulfilling
6G
and
AI
integration
demands,
the
universality
and
efficiency
of
existing
AI
design
methodsdriven
by
scenario
use
cases,
plugins,
or
grafts
need
to
be
improved.Scenario-driven
AIExternal
or
grafting
AInDesign
separate
AI
models
for
specific
air
interface
and
networkoptimization
use
casesnAdd
AI
servers
or
AI-related
network
functions
to
the
network,
such
as
NWDAFNWDAFIntelligentdataAIserversCNRANUEMassivetrafficdataanalysisAI
forNetworksChangingchannelconditionsAntennaweighttuningNetworkManagementReducedswitchingperformanceUsermovementpredictionProblem:It‘s
challenging
to
guarantee
real-time,
effective,
andconsistent
data.
Completing
the
entire
AI
process
involves
high
trial
anderror
costs.Problem:
AI
models
have
low
generalization,
longdevelopment
cycles,
and
high
costsnDesign
different
AI
service
processes
for
different
third-party
AIscenariosnCloud
AI
service
providers
provide
best-effort
AI
services
after
users
submit
ordersHigh-speedintelligentfollowingSubmitAINetworkInternetofVehiclesServiceOrderTransmissionNetworks
forAIReal-timemulti-agentsmartfactorycollaborationUsermovementNetworkUEXR/VRCloudAIServiceProviderpredictionProblem:Data
is
only
uploaded
to
the
cloud,
making
it
difficult
toefficiently
leverage
the
ubiquitous
resources
within
the
network,
whichcannot
guarantee
the
quality
and
security
of
AI
servicesProblem:
The
network
struggles
to
rapidly
deploy
AIservices
for
diverse
scenarios66G
Native
AI
Design
PrinciplesTo
achieve
ubiquitous
intelligence,
6G
network
architecture
requires
"four
transformations"CloudCloudCloudAIprovidersNWDAFCNCNCommunicationQoSAI
workflow
15G
External
AI6G
Native
AI
AI
workflow
2CommunicationQoSTrafficanalysisTrafficanalysisAntennaadjustmentAntennaadjustmentMovementpredictionMovementpredictionCommunicationComputingAIFour
elements
collaborationDataAlgorithm7Table
of
contentsDriving
forces
of
6G
native
AI1236G
native
AI
architecture
designand
key
features6G
and
Foundation
Model86G
Native
AI
network
architectureChallenge:
As
the
three
fundamental
components
of
AI
(data,
algorithms
and
computing)
have
gainedsignificance
on
par
with
network
connections,
the
design
of
the
corresponding
architecture,
interfaces,
andprotocols
should
span
the
entire
AI
lifecycle.Dataplane:managesnetworkdata
andprovidesdata
servicesResourcelayer:provideunderlyingresourcesComputingplane:managescomputingandprovidescomputingservicesNetworkfunctionlayer:providespecificnetworkfunction/networkservicecapabilitiesIntelligentplane:providestheoperatingenvironmentfor
fulllife-cycleofnativeAI.Applicationandservicelayer:providecorrespondingsupportforcustomers'businessneeds.Unlike5Gnetwork,newdata
plane,smartplane,andcomputingplanewillbedefinedin6Gnetwork,andtraditionalcontrol
planeanduserplaneare
expectedto
beextendedaswell.96G
Native
AI
network
architectureTo
achieve
AI
services,
collaboration
among
communication,
data,
computing,
and
intelligence
is
essential.
Theintegrated
architecture
enables
east-west
and
north-south
processes,
meeting
QoAIS
requirements
for
internal
andexternal
AI
services1.
Ubiquitous
intelligent
network
and
AIintegrated
service
framework2.
From
External
Overlay
to
InternalSynergy3.
From
best-effort
to
on-demandNetworks
for
AIIntelligence
PlaneCommunicationPlaneData
PlaneCompute
PlaneDigitalTwinAIManagementandOrchestrationAI
Use
CaseGenerationand
StrategyNetworkfunctionarrangementAI
forNetworksService
QoSAnalysisAITaskManagementDigitaltwinforcommuni-cationFourAI
TaskLifecycleManagementAI
TaskSchedulingElementResourceControlCommunicationControlComputingControlDataControlModelControlCommunicationBearerDataProcessingComputingExecutionModelOperationResultsofAItraining,inference,compression,verification,etc.10Key
Feature
1:
AI
Service
Quality
(QoAIS)Traditional
QoS
systems
primarily
emphasize
session
and
connection
performance,
lacking
comprehensive
supportfor
diverse
requirements;The
QoAIS
indicator
system
incorporates
security,
privacy,
autonomy,
and
resourceoverhead
as
new
evaluation
dimensions
to
form
a
standardized
AI
service
quality
evaluation
system.QoAISGuaranteeMechanismSmartEntertainmentSmart
CitySmartIndustrySmart
LifeSmartCommunityPlatformizedService
NetworkManagement&AIServiceService
QoSOrchestrationAITaskTask
QoSTaskManagementAlgorithmComputinDataConnectionResourceQoSTask
ControlgUnified
IP
computing-network
baseOTN/OXCOTN/OXCOTN/OXCAll
optical
baseComputing-Network
InfrastructureKey
Feature
2:
Deep
integration
of
AI
computing
and
communicationDesigning
a
native
AI
protocol
that
integrates
computing
and
communication
is
necessary
to
meet
AI‘s
connectivityand
distributed
computing
service
needs.It
is
achieved
through
three
dimensions:
Management
Plane,
Control
Plane
and
User
PlaneControl
Plane:
Three
Modes
of
Deep
Convergence
ofComputing
and
CommunicationManagement
PlaneMode1Mode2Mode3FunctionalarrangementQoSanalysisComputing
requirementsfor
6G
native
AICoordinationxNBxNBHigh
computationalefficiencyConnectioncontrolComputingcontrolConnectioncontrolComputingcontrolConvergedcontrolLow
energyconsumption
andlatencyCCBCEBCCBCCBCEBCEBComputing
Task
Data
Transmission&ExecutionMeet
the
differentiatedQoAIS
needsTask1CEBCEBCEBUser
PlaneCCBCCBTask3collaborativedesignofcomputingandcommunicationprotocolCCBCCBCEBCSCEBTask2CEBCEB:ComputingExecutionBearerCCB:ComputingConnectionBearerCS:ComputingSession=CEB+CCBKey
Feature
3:
Data
Generation
and
Reliable
AIThe
massive
training
data
demand
and
high
risk
of
trial
and
error
for
AI
in
the
network
require
networkdigital
twins
to
achieve
on-demand
data
generation
and
reliable
AI
and
verificationData
generation
andNetwork
Digital
Twinoptimization1.
Reduce
the
cost
of
data
collectionandtransmission;2.Solveproblemssuchasdifficultyinobtainingtraditionalrealdata;3.Technology:
DataAugmentationinGANs;Network
virtualsceneNetworkstatepredictionNetwork
AIRequirementsAIservicesDigital
twinentityDigitaltwinmodelingrequirementsPre
validation
of
AIExternal
demandAuto-generatedrequirementsProcesseddataData
on-demandcollection
andgeneration1.Intendedto
completeperformancepre
validationwithoutaffectingnetworkoperations;Requirementsfordatacollectionandgeneration2.
Reduce
potential
risks
thatdecisions
maylead
to,
such
asdeterioratingnetworkperformance;RadioCUDUAAUphysicalnetworkVirtualizationCore
NetworkCloud
based
Radio
Access
NetworkTable
of
contentsDriving
forces
of
6G
native
AI1236G
native
AI
architecture
designand
key
features6G
and
Foundation
Model14The
Convergence
of
6G
and
AI:
A
New
Era
of
Foundation
ModelsAs
AI
enters
the
era
of
general
intelligence,
the
emergence
of
Foundation
Models
promises
a
profoundtransformation
in
the
integration
of
6G
and
AINetworks
forFoundation
ModelsFoundation
Modelsfor
NetworksThenetworkservesasaplatformto
supportorprovideFoundationModelsservicesFoundationModelswillenhancemobilenetworkservicesinaspectssuchasoperations,execution,andverificationDomainsRequirementsImpactonNetworksSmallNetworkOperationsMulti-modalMachineLearning,LanguageUnderstanding,TextGenerationNetworkMaintenanceNon-standardDataGovernance,DataAlignment,NaturalLanguageUnderstanding,CodeGenerationMediumLargeNetworkRunningNon-standardDataGovernance,ImageGeneration,VideoGeneration?
Providerichenvironmentaldataforfoundationmodels?
Offerintent-based
servicesto
users?
Achieveglobalcollaborativecontrolof
intelligentterminals?
DetectingFailures
andGeneratingSolutions?
OrchestratingandSchedulingTask
Workflows?
PlayingaVitalRole
intheValidation
Phase15Networks
for
Foundation
Models6G
native
AI
facilitates
the
training
of
foundation
models
by
providing
links
and
data
services
during
the
trainingprocess,
and
supports
the
inference
process
with
links,
computation,
and
model
decomposition/distribution
servicesGAI
training
servicesAI
inference
servicesProcesseddataProcesseddataMassivedatacollectionInferencerequestsDataprocessingAIinferenceUE6GNetworkCloudAIprovidersUE6GNetworkCloudAIprovidersFoundationmodelstrainingoftenneedshigh-speedfiber
Foundationmodelsrequiresignificantstoragespaceandopticconnectionsindatacenters,makingradionetwork
powerfulAIinferencechips,whichcannotbemetbyaFeaturesServicesdeploymentchallenging.singlebasestation.Collectinguserandnetworkdata,preprocessingit,andmanagingtrafficto
supportmodeltrainingWithpropermodelsegmentation,modelscanbedeployedinwirelessnetworksto
offerAIinferenceservices.PotentialgainsIn6Gnetworks,deployingmodelscloserto
userscanreducelatency6Gnetworksprocessdataefficiently,reducingdatatransmissionandimprovingcloudAItrainingformodelsHowto
balanceincreasedinferencelatencywithreducedtransmissionlatencyin6Gnetworks?Are
techniqueslike
modelsegmentation,compression,andaccelerationfeasibleforFutureissuesTherequiredspecialdataanalysistechniques?Howtoefficientlyscheduledatainadistributed?16models?databeeffectivelyscheduledbetweennodes?Foundation
Models
for
NetworksFoundation
Models
for
Networks
face
significant
challenges
due
to
the
abundance
of
structured
data
and
unclearcommonalities
among
different
network
problems,
unlike
ChatGPTExploring
in
phases,
beginning
with
the
exploration
of
network
operations
ai
general
modelsProgressing
from
small-scale
to
large-scale
and
from
offline
to
real-time,
ultimately
investigating
thefeasibility
of
unificationSmall-scalelarge-scaleunifiedOfflineScenario-basedoperationmodelOperation
universalmodel?Networkuniversal
modelsmallmodel1Service-levelrunningmodel?smallmodel2…smallmodelNMulti-scenariouniversal
runningmodelNetwork-levelrunningmodel?Single-systemrunningmodelReal
time17The
Challenges
of
Network
AI
Foundation
Models
-
DataNetwork
operation
and
maintenance
data
is
mainly
available
at
minute/hour
intervals
from
a
consistent
source,while
network
operational
data
is
more
complex
due
to
varying
time
intervals,
standardization,
and
data
sources,making
it
harder
to
acquire.Data
openness
and
standardizationIndustry-wide
collaborative
data
openness6GANA
collaborates
with
multiple
organizations,
including
the
NineHeavens
platform,
to
release
four
major
datasets,
creating
an
industry
datasharing
ecosystem
to
support
network
AI
research!Difficult
dataacquisitionPoor
dataqualityIntelligent
RANSlicing
DatasetCSI
CompressionFeedback
DatasetData
opennessContinuouslycuratingandaccumulatingintelligentnetworkdatasets,opento
thepublic,to
buildaseriesof
innovativesmart
networkecosystems,andsupportresearchstandardizationCollaboratewiththeindustryto
jointlyformulatenewdatacollectionstandardsanddevelopadynamicdatacollectiongranularityschemetailoredto
specificneedsNetwork
AI
SchedulingTechnology
Research
DatasetRadio
ResourceScheduling
Dataset18The
Challenges
of
Network
AI
Foundation
Models
-
EvaluationEstablishing
a
comprehensive
evaluation
system
for
AI-enabled
networks
to
ensure
overall
practicality,
balance,
andsystematicity
of
technical
solutions.RequirementsChallenges?
Creatingaholisticmetricsystembalancingcapability,efficiency,andquality.?
Coveringcustomization,generalization,universality,real-timeperformance,reliability,andcost-effectivenessFeasibility
ofQuantitativeMetricsMetricsDrivers?
Designinganengineeringevaluationmethodencompassingtheentirelifecycleandallelements?
Includingtraininginference,elementweights,comprehensiveobjecti
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026山東聊城市市屬事業(yè)單位招聘初級綜合類崗位人員備考題庫及答案詳解(考點梳理)
- 2026云南師范大學實驗中學巫家壩校區(qū)招聘7人備考題庫帶答案詳解
- 2026云南怒江州福貢縣機關事務服務中心招聘行政中心安保人員1人備考題庫完整參考答案詳解
- 2026中國郵政集團亳州分公司網廳(楚村支局)外包人才招聘1人備考題庫(安徽)及答案詳解一套
- 2026上海證券交易所員工招聘備考題庫及參考答案詳解1套
- 2026安徽池州市青陽縣急需緊缺人才引進10人備考題庫(含答案詳解)
- 2026年2月重慶萬州區(qū)周家壩街道公益性崗位招聘1人備考題庫及一套參考答案詳解
- 2026北京市大興區(qū)觀音寺街道社區(qū)衛(wèi)生服務中心招聘臨時輔助用工人員3人備考題庫(第一批)及完整答案詳解1套
- 2026山東事業(yè)單位統(tǒng)考菏澤市鄄城縣招聘初級綜合類崗位24人備考題庫及完整答案詳解1套
- 2026四川成都市錦江區(qū)國有企業(yè)招聘18人備考題庫及答案詳解(奪冠系列)
- 小學六年級上冊數學期末測試卷及參考答案(輕巧奪冠)
- DZ∕T 0130-2006 地質礦產實驗室測試質量管理規(guī)范(正式版)
- (高清版)JGJT 178-2009 補償收縮混凝土應用技術規(guī)程
- 電梯日管控、周排查、月調度內容表格
- 黑龍江省中藥飲片炮制規(guī)范及標準
- QC-提高衛(wèi)生間防水一次驗收合格率
- 江蘇省徐州市2022-2023學年高一上學期期末抽測政治試題(原卷版)
- 地基處理施工中的安全風險與防范
- 食材配送服務方投標方案(技術標)
- 人教版六年級科學上期末測試題(2份)有答案
- 食品安全全球標準BRCGS第9版內部審核全套記錄
評論
0/150
提交評論