版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
平行四邊形全章教案平行四邊形全章教案/平行四邊形全章教案平行四邊形及其性質(zhì)(一)教學(xué)目標(biāo):理解并掌握平行四邊形的概念和平行四邊形對(duì)邊、對(duì)角相等的性質(zhì).會(huì)用平行四邊形的性質(zhì)解決簡(jiǎn)單的平行四邊形的計(jì)算問(wèn)題,并會(huì)進(jìn)行有關(guān)的論證.培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的能力及邏輯推理能力.重點(diǎn)、難點(diǎn)重點(diǎn):平行四邊形的定義,平行四邊形對(duì)角、對(duì)邊相等的性質(zhì),以及性質(zhì)的應(yīng)用.難點(diǎn):運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算.三、例題的意圖分析例1是教材P93的例1,它是平行四邊形性質(zhì)的實(shí)際應(yīng)用,題目比較簡(jiǎn)單,其目的就是讓學(xué)生能運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的計(jì)算,講課時(shí),可以讓學(xué)生來(lái)解答.例2是補(bǔ)充的一道幾何證明題,即讓學(xué)生學(xué)會(huì)運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證,又讓學(xué)生從較簡(jiǎn)單的幾何論證開始,提高學(xué)生的推理論證能力和邏輯思維能力,學(xué)會(huì)演繹幾何論證的方法.此題應(yīng)讓學(xué)生自己進(jìn)行推理論證.四、課堂引入1.我們一起來(lái)觀察下圖中的竹籬笆格子和汽車的防護(hù)鏈,想一想它們是什么幾何圖形的形象?平行四邊形是我們常見(jiàn)的圖形,你還能舉出平行四邊形在生活中應(yīng)用的例子嗎?你能總結(jié)出平行四邊形的定義嗎?(1)定義:兩組對(duì)邊分別平行的四邊形是平行四邊形.(2)表示:平行四邊形用符號(hào)“”來(lái)表示.如圖,在四邊形ABCD中,AB∥DC,AD∥BC,則四邊形ABCD是平行四邊形.平行四邊形ABCD記作“ABCD”,讀作“平行四邊形ABCD”.已知:如圖ABCD,求證:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的對(duì)角線AC,它將平行四邊形分成△ABC和△CDA,證明這兩個(gè)三角形全等即可得到結(jié)論.(作對(duì)角線是解決四邊形問(wèn)題常用的輔助線,通過(guò)作對(duì)角線,可以把未知問(wèn)題轉(zhuǎn)化為已知的關(guān)于三角形的問(wèn)題.)五、例習(xí)題分析例1(教材P93例1)例2(補(bǔ)充)如圖,在平行四邊形ABCD中,AE=CF,求證:AF=CE.分析:要證AF=CE,需證△ADF≌△CBE,由于四邊形ABCD是平行四邊形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根據(jù)等式性質(zhì),可得BE=DF.由“邊角邊”可得出所需要的結(jié)論.證明略.六、隨堂練習(xí)xkb1.com1.填空:(1)在ABCD中,∠A=,則∠B=度,∠C=度,∠D=度.(2)如果ABCD中,∠A—∠B=240,則∠A=度,∠B=度,∠C=度,∠D=度.(3)如果ABCD的周長(zhǎng)為28cm,且AB:BC=2∶5,則AB=cm,BC=cm,CD=cm,CD=cm.2.如圖4.3-9,在ABCD中,AC為對(duì)角線,BE⊥AC,DF⊥AC,E、F為垂足,求證:BE=DF.平行四邊形的性質(zhì)(二)一、教學(xué)目標(biāo):1、理解平行四邊形中心對(duì)稱的特征,掌握平行四邊形對(duì)角線互相平分的性質(zhì)2、能綜合運(yùn)用平行四邊形的性質(zhì)解決平行四邊形的有關(guān)計(jì)算問(wèn)題,和簡(jiǎn)單的證明題.3、培養(yǎng)學(xué)生的推理論證能力和邏輯思維能力.二、重點(diǎn)、難點(diǎn)重點(diǎn):平行四邊形對(duì)角線互相平分的性質(zhì),以及性質(zhì)的應(yīng)用.難點(diǎn):綜合運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算.三、例題的意圖分析本節(jié)課安排了兩個(gè)例題,例1是一道補(bǔ)充題,它是性質(zhì)3的直接運(yùn)用,然后對(duì)例1進(jìn)行了引申,可以根據(jù)學(xué)生的實(shí)際情況選講,并歸納結(jié)論:過(guò)平行四邊形對(duì)角線的交點(diǎn)作直線交對(duì)邊或?qū)叺难娱L(zhǎng)線,所得的對(duì)應(yīng)線段相等.例1與后面的三個(gè)圖形是一組重要的基本圖形,熟悉它的性質(zhì)對(duì)解答復(fù)雜問(wèn)題是很有幫助的.例2是教材P94的例2,這是復(fù)習(xí)鞏固小學(xué)學(xué)過(guò)的平行四邊形面積計(jì)算.這個(gè)例題比小學(xué)計(jì)算平行四邊形面積的題加深了一步,需要應(yīng)用勾股定理,先求得平行四邊形一邊上的高,然后才能應(yīng)用公式計(jì)算.在以后的解題中,還會(huì)遇到需要應(yīng)用勾股定理來(lái)求高或底的問(wèn)題,在教學(xué)中要注意使學(xué)生掌握其方法.四、課堂引入1.復(fù)習(xí)提問(wèn):(1)什么樣的四邊形是平行四邊形?四邊形與平行四邊形的關(guān)系是:(2)平行四邊形的性質(zhì):①具有一般四邊形的性質(zhì)(內(nèi)角和是).②角:平行四邊形的對(duì)角相等,鄰角互補(bǔ).邊:平行四邊形的對(duì)邊相等.2.【探究】:請(qǐng)學(xué)生在紙上畫兩個(gè)全等的ABCD和EFGH,并連接對(duì)角線AC、BD和EG、HF,設(shè)它們分別交于點(diǎn)O.把這兩個(gè)平行四邊形落在一起,在點(diǎn)O處釘一個(gè)圖釘,將ABCD繞點(diǎn)O旋轉(zhuǎn),觀察它還和EFGH重合嗎?你能從子中看出前面所得到的平行四邊形的邊、角關(guān)系嗎?進(jìn)一步,你還能發(fā)現(xiàn)平行四邊形的什么性質(zhì)嗎?結(jié)論:(1)平行四邊形是中心對(duì)稱圖形,兩條對(duì)角線的交點(diǎn)是對(duì)稱中心;(2)平行四邊形的對(duì)角線互相平分.五、例習(xí)題分析例(教材P94的例2)已知四邊形ABCD是平行四邊形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的長(zhǎng)以及ABCD的面積.分析:由平行四邊形的對(duì)邊相等,可得BC、CD的長(zhǎng),在Rt△ABC中,由勾股定理可得AC的長(zhǎng).再由平行四邊形的對(duì)角線互相平分可求得OA的長(zhǎng),根據(jù)平行四邊形的面積計(jì)算公式:平行四邊形的面積=底×高(高為此底上的高),可求得ABCD的面積.(平行四邊形的面積小學(xué)學(xué)過(guò),再次強(qiáng)調(diào)“底”是對(duì)應(yīng)著高說(shuō)的,平行四邊形中,任一邊都可以作為“底”,“底”確定后,高也就隨之確定了.)3.平行四邊形的面積計(jì)算解略(參看教材P94).六、隨堂練習(xí)(一)平行四邊形的判定一、教學(xué)目標(biāo):1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法.2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題.3.培養(yǎng)用類比、逆向聯(lián)想及運(yùn)動(dòng)的思維方法來(lái)研究問(wèn)題.二、重點(diǎn)、難點(diǎn)重點(diǎn):平行四邊形的判定方法及應(yīng)用.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用.三、例題的意圖分析本節(jié)課安排了3個(gè)例題,例1是教材P96的例3,它是平行四邊形的性質(zhì)與判定的綜合運(yùn)用,此題最好先讓學(xué)生說(shuō)出證明的思路,然后老師總結(jié)并指出其最佳方法.例2與例3都是補(bǔ)充的題目,其目的就是讓學(xué)生能靈活和綜合地運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題.例3是一道拼圖題,教學(xué)時(shí),可以讓學(xué)生動(dòng)起來(lái),邊拼圖邊說(shuō)明道理,即可以提高學(xué)生的動(dòng)手能力和學(xué)生的思維能力,又可以提高學(xué)生的學(xué)習(xí)興趣.如讓學(xué)生再用四個(gè)不等邊三角形拼一個(gè)如圖的大三角形,讓學(xué)生指出圖中所有的平行四邊形,并說(shuō)明理由.四、課堂引入1.欣賞圖片、提出問(wèn)題.展示圖片,提出問(wèn)題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的?2.【探究】:小明的父親手中有一些木條,他想通過(guò)適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來(lái)嗎?讓學(xué)生利用手中的學(xué)具——硬紙板條通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?(3)你能說(shuō)出你的做法及其道理嗎?(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?(5)你還能找出其他方法嗎?從探究中得到:平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。例1(教材P96例3)已知:如圖ABCD的對(duì)角線AC、BD交于點(diǎn)O,E、F是AC上的兩點(diǎn),并且AE=CF.求證:四邊形BFDE是平行四邊形.分析:欲證四邊形BFDE是平行四邊形可以根據(jù)判定方法2來(lái)證明.(證明過(guò)程參看教材)問(wèn);你還有其它的證明方法嗎?比較一下,哪種證明方法簡(jiǎn)單.(二)平行四邊形的判定一、教學(xué)目標(biāo):1.掌握用一組對(duì)邊平行且相等來(lái)判定平行四邊形的方法.2.會(huì)綜合運(yùn)用平行四邊形的四種判定方法和性質(zhì)來(lái)證明問(wèn)題.3.通過(guò)平行四邊形的性質(zhì)與判定的應(yīng)用,啟迪學(xué)生的思維,提高分析問(wèn)題的能力.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):平行四邊形各種判定方法及其應(yīng)用,尤其是根據(jù)不同條件能正確地選擇判定方法.2.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的綜合應(yīng)用.三、例題的意圖分析本節(jié)課的兩個(gè)例題都是補(bǔ)充的題目,目的是讓學(xué)生能掌握平行四邊形的第三種判定方法和會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題.學(xué)生程度好一些的學(xué)校,可以適當(dāng)?shù)刈约涸傺a(bǔ)充一些題目,使同學(xué)們會(huì)應(yīng)用這些方法進(jìn)行幾何的推理證明,通過(guò)學(xué)習(xí),培養(yǎng)學(xué)生分析問(wèn)題、尋找最佳解題途徑的能力.四、課堂引入平行四邊形的性質(zhì);平行四邊形的判定方法;【探究】取兩根等長(zhǎng)的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?結(jié)論:一組對(duì)邊平行且相等的四邊形是平行四邊形.例已知:如圖,ABCD中,E、F分別是AC上兩點(diǎn),且BE⊥AC于E,DF⊥AC于F.求證:四邊形BEDF是平行四邊形.分析:因?yàn)锽E⊥AC于E,DF⊥AC于F,所以BE∥DF.需再證明BE=DF,這需要證明△ABE與△CDF全等,由角角邊即可.六、課堂練習(xí)1.(選擇)在下列給出的條件中,能判定四邊形ABCD為平行四邊形的是().(A)AB∥CD,AD=BC(B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC(D)AB=AD,CB=CD2.已知:如圖,AC∥ED,點(diǎn)B在AC上,且AB=ED=BC,找出圖中的平行四邊形,并說(shuō)明理由.3.已知:如圖,在ABCD中,AE、CF分別是∠DAB、∠BCD的平分線.求證:四邊形AFCE是平行四邊形.七、課后練習(xí)(三)平行四邊形的判定——三角形的中位線一、教學(xué)目標(biāo):1.理解三角形中位線的概念,掌握它的性質(zhì).2.能較熟練地應(yīng)用三角形中位線性質(zhì)進(jìn)行有關(guān)的證明和計(jì)算.3.經(jīng)歷探索、猜想、證明的過(guò)程,進(jìn)一步發(fā)展推理論證的能力.4.能運(yùn)用綜合法證明有關(guān)三角形中位線性質(zhì)的結(jié)論.理解在證明過(guò)程中所運(yùn)用的歸納、類比、轉(zhuǎn)化等思想方法.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):掌握和運(yùn)用三角形中位線的性質(zhì).2.難點(diǎn):三角形中位線性質(zhì)的證明(輔助線的添加方法).三、例題的意圖分析三角形中位線性質(zhì)的證明題,教材采用的是先證明后引出概念與性質(zhì)的方法,它一是要練習(xí)鞏固平行四邊形的性質(zhì)與判定,二是為了降低難度,因此教師們?cè)诮虒W(xué)中要把握好度.建議講完例1,引出三角形中位線的概念和性質(zhì)后,馬上做一組練習(xí),以鞏固三角形中位線的性質(zhì),然后再講例2.例2是一道補(bǔ)充題,選自老教材的一個(gè)例題,它是三角形中位線性質(zhì)與平行四邊形的判定的混合應(yīng)用題,題型挺好,添加輔助線的方法也很巧,結(jié)論以后也會(huì)經(jīng)常用到,可根據(jù)學(xué)生情況適當(dāng)?shù)倪x講例2.教學(xué)中,要把輔助線的添加方法講清楚,可以借助與多媒體或教具.四、課堂引入1.平行四邊形的性質(zhì);平行四邊形的判定;它們之間有什么聯(lián)系?2.你能說(shuō)說(shuō)平行四邊形性質(zhì)與判定的用途嗎?(答:平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問(wèn)題.例如求角的度數(shù),線段的長(zhǎng)度,證明角相等或線段相等等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問(wèn)題.)3.創(chuàng)設(shè)情境實(shí)驗(yàn):請(qǐng)同學(xué)們思考:將任意一個(gè)三角形分成四個(gè)全等的三角形,你是如何切割的?(答案如圖)圖中有幾個(gè)平行四邊形?你是如何判斷的?D、E、分別為△ABC邊AB、AC的中點(diǎn),求證:DE∥BC且DE=BC.所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學(xué)過(guò)的知識(shí),可以把要證明的內(nèi)容轉(zhuǎn)化到一個(gè)平行四邊形中,利用平行四邊形的對(duì)邊平行且相等的性質(zhì)來(lái)證明結(jié)論成立,從而使問(wèn)題得到解決,這就需要添加適當(dāng)?shù)妮o助線來(lái)構(gòu)造平行四邊形.六、課堂練習(xí)矩形(一)一、教學(xué)目標(biāo):1.掌握矩形的概念和性質(zhì),理解矩形與平行四邊形的區(qū)別與聯(lián)系.2.會(huì)初步運(yùn)用矩形的概念和性質(zhì)來(lái)解決有關(guān)問(wèn)題.3.滲透運(yùn)動(dòng)聯(lián)系、從量變到質(zhì)變的觀點(diǎn).二、重點(diǎn)、難點(diǎn)1.重點(diǎn):矩形的性質(zhì).2.難點(diǎn):矩形的性質(zhì)的靈活應(yīng)用.三、例題的意圖分析例1是教材P104的例1,它是矩形性質(zhì)的直接運(yùn)用,它除了用以鞏固所學(xué)的矩形性質(zhì)外,對(duì)計(jì)算題的格式也起了一個(gè)示范作用.例2與例3都是補(bǔ)充的題目,其中通過(guò)例2的講解是想讓學(xué)生了解:(1)因?yàn)榫匦嗡膫€(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法;(2)“直角三角形斜邊上的高”是一個(gè)基本圖形,利用面積公式,可得到兩直角邊、斜邊及斜邊上的高的一個(gè)基本關(guān)系式.并能通過(guò)例2、例3的講解使學(xué)生掌握解決有關(guān)矩形方面的一些計(jì)算題目與證明題的方法.四、課堂引入1.展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門,活動(dòng)衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?2.思考:拿一個(gè)活動(dòng)的平行四邊形教具,輕輕拉動(dòng)一個(gè)點(diǎn),觀察不管怎么拉,它還是一個(gè)平行四邊形嗎?為什么?(動(dòng)畫演示拉動(dòng)過(guò)程如圖)3.再次演示平行四邊形的移動(dòng)過(guò)程,當(dāng)移動(dòng)到一個(gè)角是直角時(shí)停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過(guò)的長(zhǎng)方形)引出本課題及矩形定義.矩形定義:有一個(gè)角是直角的平行四邊形叫做矩形(通常也叫長(zhǎng)方形).矩形是我們最常見(jiàn)的圖形之一,例如書桌面、教科書的封面等都有矩形形象.【探究】在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上(作出對(duì)角線),拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀.=1\*GB3①隨著∠α的變化,兩條對(duì)角線的長(zhǎng)度分別是怎樣變化的?=2\*GB3②當(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)它的其他內(nèi)角是什么樣的角?它的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?操作,思考、交流、歸納后得到矩形的性質(zhì).矩形性質(zhì)1矩形的四個(gè)角都是直角.矩形性質(zhì)2矩形的對(duì)角線相等.例1(教材P104例1)已知:如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,∠AOB=60°,AB=4cm,求矩形對(duì)角線的長(zhǎng).分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅?,所以它具有?duì)角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個(gè)特性和已知,可得△OAB是等邊三角形,因此對(duì)角線的長(zhǎng)度可求.七、課后練習(xí)1.(選擇)矩形的兩條對(duì)角線的夾角為60°,對(duì)角線長(zhǎng)為15cm,較短邊的長(zhǎng)為().(A)12cm(B)10cm(C)7.5cm(D)5cm 2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度數(shù).3.已知:矩形ABCD中,BC=2AB,E是BC的中點(diǎn),求證:EA⊥ED.4.如圖,矩形ABCD中,AB=2BC,且AB=AE,求證:∠CBE的度數(shù).矩形(二)一、教學(xué)目標(biāo):1.理解并掌握矩形的判定方法.2.使學(xué)生能應(yīng)用矩形定義、判定等知識(shí),解決簡(jiǎn)單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力二、重點(diǎn)、難點(diǎn)1.重點(diǎn):矩形的判定.2.難點(diǎn):矩形的判定及性質(zhì)的綜合應(yīng)用.三、例題的意圖分析本節(jié)課的三個(gè)例題都是補(bǔ)充題,例1在的一組判斷題是為了讓學(xué)生加深理解判定矩形的條件,老師們?cè)诮虒W(xué)中還可以適當(dāng)?shù)卦僭黾右恍┡袛嗟念}目;例2是利用矩形知識(shí)進(jìn)行計(jì)算;例3是一道矩形的判定題,三個(gè)題目從不同的角度出發(fā),來(lái)綜合應(yīng)用矩形定義及判定等知識(shí)的.四、課堂引入1.什么叫做平行四邊形?什么叫做矩形?2.矩形有哪些性質(zhì)?3.矩形與平行四邊形有什么共同之處?有什么不同之處?4.事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來(lái)兩根長(zhǎng)度相等的短木條和兩根長(zhǎng)度相等的長(zhǎng)木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰(shuí)的方法可行?通過(guò)討論得到矩形的判定方法.矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形.矩形判定方法2:有三個(gè)角是直角的四邊形是矩形.(指出:判定一個(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角.)五、例習(xí)題分析例1(補(bǔ)充)下列各句判定矩形的說(shuō)法是否正確?為什么?
(1)有一個(gè)角是直角的四邊形是矩形;(×)
(2)有四個(gè)角是直角的四邊形是矩形;(√)
(3)四個(gè)角都相等的四邊形是矩形;(√)
(4)對(duì)角線相等的四邊形是矩形;(×)
(5)對(duì)角線相等且互相垂直的四邊形是矩形;(×)(6)對(duì)角線互相平分且相等的四邊形是矩形;(√)(7)對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形;(×)(8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;(√)
(9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形.(√)指出:
(l)所給四邊形添加的條件不滿足三個(gè)的一定不是矩形;
(2)所給四邊形添加的條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論..菱形(一)一、教學(xué)目的:1.掌握菱形概念,知道菱形與平行四邊形的關(guān)系.2.理解并掌握菱形的定義及性質(zhì)1、2;會(huì)用這些性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算,會(huì)計(jì)算菱形的面積.3.通過(guò)運(yùn)用菱形知識(shí)解決具體問(wèn)題,提高分析能力和觀察能力.4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過(guò)畫圖向?qū)W生滲透集合思想.二、重點(diǎn)、難點(diǎn)1.教學(xué)重點(diǎn):菱形的性質(zhì)1、2.2.教學(xué)難點(diǎn):菱形的性質(zhì)及菱形知識(shí)的綜合應(yīng)用.三、例題的意圖分析本節(jié)課安排了兩個(gè)例題,例1是一道補(bǔ)充題,是為了鞏固菱形的性質(zhì);例2是教材P108中的例2,這是一道用菱形知識(shí)與直角三角形知識(shí)來(lái)求菱形面積的實(shí)際應(yīng)用問(wèn)題.此題目,除用以鞏固菱形性質(zhì)外,還可以引導(dǎo)學(xué)生用不同的方法來(lái)計(jì)算菱形的面積,以促進(jìn)學(xué)生熟練、靈活地運(yùn)用知識(shí).四、課堂引入1.(復(fù)習(xí))什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?2.(引入)我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形——矩形,其實(shí)還有另外的特殊平行四邊形,請(qǐng)看演示:(可將事先按如圖做成的一組對(duì)邊可以活動(dòng)的教具進(jìn)行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.【強(qiáng)調(diào)】菱形(1)是平行四邊形;(2)一組鄰邊相等.讓學(xué)生舉一些日常生活中所見(jiàn)到過(guò)的菱形的例子.五、例習(xí)題分析例1
(補(bǔ)充)已知:如圖,四邊形ABCD是菱形,F(xiàn)是AB上一點(diǎn),DF交AC于E.求證:∠AFD=∠CBE.證明:∵四邊形ABCD是菱形,∴CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又CE=CE,∴△BCE≌△COB(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC∴∠AFD=∠CBE.例2(教材P108例2)略六、隨堂練習(xí)1.若菱形的邊長(zhǎng)等于一條對(duì)角線的長(zhǎng),則它的一組鄰角的度數(shù)分別為.2.已知菱形的兩條對(duì)角線分別是6cm和8cm,求菱形的周長(zhǎng)和面積.3.已知菱形ABCD的周長(zhǎng)為20cm,且相鄰兩內(nèi)角之比是1∶2,求菱形的對(duì)角線的長(zhǎng)和面積.4.已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點(diǎn),且BE=DF.求證:∠AEF=∠AFE.七、課后練習(xí)1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周長(zhǎng)為8cm,求菱形的高.2.如圖,四邊形ABCD是邊長(zhǎng)為13cm的菱形,其中對(duì)角線BD長(zhǎng)10cm,求(1)對(duì)角線AC的長(zhǎng)度;(2)菱形ABCD的面積.菱形(二)一、教學(xué)目的:1.理解并掌握菱形的定義及兩個(gè)判定方法;會(huì)用這些判定方法進(jìn)行有關(guān)的論證和計(jì)算;2.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力及邏輯思維能力.二、重點(diǎn)、難點(diǎn)1.教學(xué)重點(diǎn):菱形的兩個(gè)判定方法.2.教學(xué)難點(diǎn):判定方法的證明方法及運(yùn)用.三、例題的意圖分析本節(jié)課安排了兩個(gè)例題,其中例1是教材P109的例3,例2是一道補(bǔ)充的題目,這兩個(gè)題目都是菱形判定方法的直接的運(yùn)用,主要目的是能讓學(xué)生掌握菱形的判定方法,并會(huì)用這些判定方法進(jìn)行有關(guān)的論證和計(jì)算.這些題目的推理都比較簡(jiǎn)單,學(xué)生掌握起來(lái)不會(huì)有什么困難,可以讓學(xué)生自己去完成.程度好一些的班級(jí),可以選講例3.四、課堂引入1.復(fù)習(xí)(1)菱形的定義:一組鄰邊相等的平行四邊形;(2)菱形的性質(zhì)1菱形的四條邊都相等;性質(zhì)2菱形的對(duì)角線互相平分,并且每條對(duì)角線平分一組對(duì)角;(3)運(yùn)用菱形的定義進(jìn)行菱形的判定,應(yīng)具備幾個(gè)條件?(判定:2個(gè)條件)2.【問(wèn)題】要判定一個(gè)四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?3.【探究】(教材P109的探究)用一長(zhǎng)一短兩根木條,在它們的中點(diǎn)處固定一個(gè)小釘,做成一個(gè)可轉(zhuǎn)動(dòng)的十字,四周圍上一根橡皮筋,做成一個(gè)四邊形.轉(zhuǎn)動(dòng)木條,這個(gè)四邊形什么時(shí)候變成菱形?通過(guò)演示,容易得到:菱形判定方法1對(duì)角線互相垂直的平行四邊形是菱形.注意此方法包括兩個(gè)條件:(1)是一個(gè)平行四邊形;(2)兩條對(duì)角線互相垂直.通過(guò)教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:菱形判定方法2四邊都相等的四邊形是菱形.五、例習(xí)題分析例1(教材P109的例3)略※例3(選講)已知:如圖,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.求證:四邊形CEHF為菱形.略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因?yàn)椤螩BE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.六、隨堂練習(xí)1.填空:(1)對(duì)角線互相平分的四邊形是;(2)對(duì)角線互相垂直平分的四邊形是________;(3)對(duì)角線相等且互相平分的四邊形是________;(4)兩組對(duì)邊分別平行,且對(duì)角線的四邊形是菱形.2.畫一個(gè)菱形,使它的兩條對(duì)角線長(zhǎng)分別為6cm、8cm.3.如圖,O是矩形ABCD的對(duì)角線的交點(diǎn),DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。七、課后練習(xí)1.下列條件中,能判定四邊形是菱形的是().(A)兩條對(duì)角線相等(B)兩條對(duì)角線互相垂直(C)兩條對(duì)角線相等且互相垂直(D)兩條對(duì)角線互相垂直平分2.已知:如圖,M是等腰三角形ABC底邊BC上的中點(diǎn),DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.3.做一做:設(shè)計(jì)一個(gè)由菱形組成的花邊圖案.花邊的長(zhǎng)為15cm,寬為4cm,由有一條對(duì)角線在同一條直線上的四個(gè)菱形組成,前一個(gè)菱形對(duì)角線的交點(diǎn),是后一個(gè)菱形的一個(gè)頂點(diǎn).畫出花邊圖形.正方形一、教學(xué)目的1.掌握正方形的概念、性質(zhì)和判定,并會(huì)用它們進(jìn)行有關(guān)的論證和計(jì)算.2.理解正方形與平行四邊形、矩形、菱形的聯(lián)系和區(qū)別,通過(guò)正方形與平行四邊形、矩形、菱形的聯(lián)系的教學(xué)對(duì)學(xué)生進(jìn)行辯證唯物主義教育,提高學(xué)生的邏輯思維能力.二、重點(diǎn)、難點(diǎn)1.教學(xué)重點(diǎn):正方形的定義及正方形與平行四邊形、矩形、菱形的聯(lián)系.2.教學(xué)難點(diǎn):正方形與矩形、菱形的關(guān)系及正方形性質(zhì)與判定的靈活運(yùn)用.三、例題的意圖分析本節(jié)課安排了三個(gè)例題,例1是教材P111的例4,例2與例3都是補(bǔ)充的題目.其中例1與例2是正方形性質(zhì)的應(yīng)用,在講解時(shí),應(yīng)注意引導(dǎo)學(xué)生能正確的運(yùn)用其性質(zhì).例3是正方形判定的應(yīng)用,它是先判定一個(gè)四邊形是矩形,再證明一組鄰邊,從而可以判定這個(gè)四邊形是正方形.隨后可以再做一組判斷題,進(jìn)行練習(xí)鞏固(參看隨堂練習(xí)1),為了活躍學(xué)生的思維,也可以將判斷題改為下列問(wèn)題讓學(xué)生思考:①對(duì)角線相等的菱形是正方形嗎?為什么?②對(duì)角線互相垂直的矩形是正方形嗎?為什么?③對(duì)角線垂直且相等的四邊形是正方形嗎?為什么?如果不是,應(yīng)該加上什么條件?④能說(shuō)“四條邊都相等的四邊形是正方形”嗎?為什么?⑤說(shuō)“四個(gè)角相等的四邊形是正方形”對(duì)嗎?四、課堂引入1.做一做:用一張長(zhǎng)方形的紙片(如圖所示)折出一個(gè)正方形.學(xué)生在動(dòng)手做中對(duì)正方形產(chǎn)生感性認(rèn)識(shí),并感知正方形與矩形的關(guān)系.問(wèn)題:什么樣的四邊形是正方形?正方形定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形.指出:正方形是在平行四邊形這個(gè)大前提下定義的,其定義包括了兩層意:(1)有一組鄰邊相等的平行四邊形(菱形)(2)有一個(gè)角是直角的平行四邊形(矩形)2.【問(wèn)題】正方形有什么性質(zhì)?由正方形的定義可以得知,正方形既是有一組鄰邊相等的矩形,又是有一個(gè)角是直角的菱形.所以,正方形具有矩形的性質(zhì),同時(shí)又具有菱形的性質(zhì).五、例習(xí)題分析例1(教材P111的例4)求證:正方形的兩條對(duì)角線把正方形分成四個(gè)全等的等腰直角三角形.已知:四邊形ABCD是正方形,對(duì)角線AC、BD相交于點(diǎn)O(如圖).求證:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.證明:∵四邊形ABCD是正方形,∴AC=BD,AC⊥BD,AO=CO=BO=DO(正方形的兩條對(duì)角線相等,并且互相垂直平分).∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO≌△BCO≌△CDO≌△DAO.例2(補(bǔ)充)已知:如圖,正方形ABCD中,對(duì)角線的交點(diǎn)為O,E是OB上的一點(diǎn),DG⊥AE于G,DG交OA于F.求證:OE=OF.分析:要證明OE=OF,只需證明△AEO≌△DFO,由于正方形的對(duì)角線垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根據(jù)ASA可以得到這兩個(gè)三角形全等,故結(jié)論可得.六、隨堂練習(xí)19.3梯形(一)一、教學(xué)目標(biāo):1.探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).2.能夠運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問(wèn)題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析問(wèn)題能力和計(jì)算能力.3.通過(guò)添加輔助線,把梯形的問(wèn)題轉(zhuǎn)化成平行四邊形或三角形問(wèn)題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):等腰梯形的性質(zhì)及其應(yīng)用.2.難點(diǎn):解決梯形問(wèn)題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線),及梯形有關(guān)知識(shí)的應(yīng)用.三、例題的意圖分析本節(jié)課安排了三個(gè)例題,例1是教材P118中的例1.它是等腰梯形性質(zhì)的直接運(yùn)用.題目比較簡(jiǎn)單,在教學(xué)中,最好讓學(xué)生分析、講解、解答.同時(shí)也要注意引導(dǎo)學(xué)生,在證明△EAD是等腰三角形時(shí),要用到梯形的定義“上下底互相平行(AD∥BC)”這一點(diǎn).例2與例3都是補(bǔ)充的題目,例2是一道計(jì)算題,例3是一道證明題,其用意一是為了鞏固其概念,二是輔助線添加方法的練習(xí),這兩個(gè)題目的輔助線均是“平移一腰”,老師們?cè)诮虒W(xué)或練習(xí)中也可以再補(bǔ)充一些其它輔助線添加方法的題目,讓學(xué)生多了解多見(jiàn)識(shí).(但由于本教材在梯形這一部分知識(shí)中,并沒(méi)有添加輔助線的要求,因此所選的題目不要太難.)通過(guò)題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問(wèn)題的基本思想和方法就是通過(guò)添加適當(dāng)?shù)妮o助線,把梯形問(wèn)題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問(wèn)題來(lái)解決.在教學(xué)時(shí)應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對(duì)于學(xué)好梯形內(nèi)容很有幫助.四、課堂引入1.創(chuàng)設(shè)問(wèn)題情境——引出梯形概念.【觀察】(教材P117中的觀察)右圖中,有你熟悉的圖形嗎?它們有什么共同的特點(diǎn)?2.畫一畫:在下列所給圖中的每個(gè)三角形中畫一條線段,【思考】(1)怎樣畫才能得到一個(gè)梯形?(2)在哪些三角形中,能夠得到一個(gè)等腰梯形?梯形一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形.(強(qiáng)調(diào):①梯形與平行四邊形的區(qū)別和聯(lián)系;②上、下底的概念是由底的長(zhǎng)短來(lái)定義的,而并不是指位置來(lái)說(shuō)的.)(1)一些基本概念(如圖):底、腰、高.(2)等腰梯形:兩腰相等的梯形叫做等腰梯形.(3)直角梯形:有一個(gè)角是直角的梯形叫做直角梯形.做—做——探索等腰梯形的性質(zhì)(引入用軸對(duì)稱解決問(wèn)題的思想).在一張方格紙上作一個(gè)等腰梯形,連接兩條對(duì)角線.【問(wèn)題一】圖中有哪些相等的線段?有哪些相等的角?這個(gè)圖形是軸對(duì)稱圖形嗎?學(xué)生畫圖并通過(guò)觀察猜想;【問(wèn)題二】這個(gè)等腰梯形的兩條對(duì)角線的長(zhǎng)度
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GA 740-2007警服材料 機(jī)織熱熔粘合襯布》專題研究報(bào)告深度
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)多孔磚行業(yè)發(fā)展全景監(jiān)測(cè)及投資方向研究報(bào)告
- 中學(xué)教育教學(xué)改革制度
- 養(yǎng)老院入住老人醫(yī)療費(fèi)用結(jié)算制度
- 企業(yè)員工培訓(xùn)與素質(zhì)拓展制度
- 企業(yè)內(nèi)部培訓(xùn)與成長(zhǎng)制度
- 2026湖北宜昌遠(yuǎn)安縣教育系統(tǒng)事業(yè)單位“招才興業(yè)”人才引進(jìn)公開招聘14人·華中師范大學(xué)站參考題庫(kù)附答案
- 2026湖北省面向中南大學(xué)普通選調(diào)生招錄備考題庫(kù)附答案
- 2026福建中共福州市委黨校招聘博士8人備考題庫(kù)附答案
- 2026福建省面向復(fù)旦大學(xué)選調(diào)生選拔工作備考題庫(kù)附答案
- 2025版 全套200MW800MWh獨(dú)立儲(chǔ)能項(xiàng)目EPC工程概算表
- 順德家俱行業(yè)分析會(huì)報(bào)告
- 2025年司法協(xié)理員年度考核表
- 風(fēng)電項(xiàng)目質(zhì)量管理
- 福建省福州市福清市2024-2025學(xué)年二年級(jí)上學(xué)期期末考試語(yǔ)文試卷
- 2025年CAR-NK細(xì)胞治療臨床前數(shù)據(jù)
- 非煤地下礦山員工培訓(xùn)
- 保安法律法規(guī)及業(yè)務(wù)能力培訓(xùn)
- 班團(tuán)活動(dòng)設(shè)計(jì)
- GB/T 6109.1-2025漆包圓繞組線第1部分:一般規(guī)定
- 前縱隔占位患者的麻醉管理要點(diǎn)(PASF 2025年)
評(píng)論
0/150
提交評(píng)論