人教版(2023)初中數(shù)學(xué)八年級期末試卷(一)(含答案解析)_第1頁
人教版(2023)初中數(shù)學(xué)八年級期末試卷(一)(含答案解析)_第2頁
人教版(2023)初中數(shù)學(xué)八年級期末試卷(一)(含答案解析)_第3頁
人教版(2023)初中數(shù)學(xué)八年級期末試卷(一)(含答案解析)_第4頁
人教版(2023)初中數(shù)學(xué)八年級期末試卷(一)(含答案解析)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

初中八年級數(shù)學(xué)期末試卷

一、單選題

1.下面計(jì)算正確的算式有()

①3x3,(-2x2)=_6x5;②3a2-4a2=12a?;③3b3,8b3=24bt(4)-3x-2xy=6x2y

A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

2.下列各式從左到右的變形,屬于因式分解的是()

A.(%+2)(%—2)=%2—4B.%2—y2=(%+y)(x—y)

C.%+2y=(%+y)+yD.%2—2%+1=(%+I)2

3.根據(jù)下列已知條件,能唯一畫出AABC的是()

A.ZC=90°,AB=6B.AB=4,BC=3,ZA=30°

C.AB=5,BC=3D.ZA=60°,ZB=45°,BC=4

4.下列四個(gè)圖形中,是軸對稱圖形的為()

AOBC◎D/)

5.把分式^中的血、幾都擴(kuò)大到原來的8倍,那么此分式的值()

A.擴(kuò)大到原來的8倍B.縮小到原來的8倍

C.是原來的gD.不變

6.下列運(yùn)算正確的是()

A.7712?m4=7718B.(—2m3)2=4m6

C.3m+m2=3a3D.(m—n)2=m2-n2

7.已知a、6、c是△ABC的三邊長,且滿足a2+2爐+o2=2ab+2bc,那么據(jù)此判斷△4BC的形狀是

()

A.等邊三角形B.直角三角形

C.鈍角三角形D.等腰直角三角形

8.分式方程磊=|的解是()

A.%=2B.%=1C.x=-1D.x=-2

9.如圖,在正方OABC中,點(diǎn)B的坐標(biāo)是(4,4),點(diǎn)E、F分別在邊BC,BA上,OE=2V5.若

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

10.如圖,菱形ABCD中,^BAD=60°,AC與BD交于點(diǎn)O,E為CD延長線上的一點(diǎn),且CD=

DE,連結(jié)BE,分另U交AC,AD于點(diǎn)F、G,連結(jié)OG,則下列結(jié)論:?OG=^AB;@SAACD=

6sABOF;③)由點(diǎn)A、B、D、E構(gòu)成的四邊形是菱形;@)S四邊形ODGF>^AABF其中正確的結(jié)論是

()

A,①②B.①②③C.①③④D.②③④

二、多選題

11.如圖,在方格中,以AB為一邊作AABP,使之與AABC全等,則在Pr,P2,P3,「4

四個(gè)點(diǎn)中,符合條件的點(diǎn)P有()

12.定義:等腰三角形的頂角與其一個(gè)底角的度數(shù)的比值k稱為這個(gè)等腰三角形的特征值

等腰ABC中,NA=80。,則等腰4ABC的特征值k=()

A.IB.IC.ID.4

13.如圖,E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

結(jié)論中正確的有()

B.AEXBF;

C.AO=OE:D.SAAOB=S四邊形DEOF

14.如圖,在△ABC中,乙4BC和乙4cB的角平分線交于點(diǎn)。,AD經(jīng)過點(diǎn)。與BC交于。,以為邊向兩

側(cè)作等邊△力CE和等邊△ADF,分另U和/B,2C交于G,H連接GH.若NBOC=120。,AB=a,AC=b,

AD=c.則下列結(jié)論中正確的是()

B.△4GH是等邊三角形

1

與互相垂直平分,

C.GHD-5AJ4BC=+b)c

15.如圖,正方形4BCD的頂點(diǎn)A,B別在久軸、y軸上,4(—4,0),G(0,4),若BC的中點(diǎn)E恰好落在

%軸上,此時(shí)DG恰好也垂直于y軸,CD交y軸于點(diǎn)F,連接DO.判斷:①BF=AE;②△ADO是等邊三

角形;@^AEB+ACDG=90°;④AB=5.其中正確的有()

16.如圖,ZABC=ZDCB,請補(bǔ)充一個(gè)條件:,^AABC^ADCB.

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

17.已知丫=洛+71不1,則自變量X的取值范圍為______________.

Jx—1

18.已知,血、久2是一元二次方程%2—4x—1=0的兩實(shí)數(shù)根,則代數(shù)式君+君—4=.

19.龍崗區(qū)八年級某班級在探究“將軍飲馬問題”時(shí)抽象出數(shù)學(xué)模型:直線1同旁有兩個(gè)定點(diǎn)A、B,在

直線1上存在點(diǎn)P,使得PA+PB的值最小.

解法:如圖1,作點(diǎn)A關(guān)于直線1的對稱點(diǎn)N,連接AB,則AB與直線1的交點(diǎn)即為P,且PA+PB

的最小值為AB.

B

圖2

請利用上述模型解決下列問題:

(1)格點(diǎn)應(yīng)用:如圖2,邊長為1的正方形網(wǎng)格內(nèi)有兩點(diǎn)A、B,直線1與A、B的位置如圖所示,

點(diǎn)P是直線1上一動(dòng)點(diǎn),則PA+PB的最小值為;

(2)幾何應(yīng)用:如圖3,ZXABC中,ZC=90°,AC=4,BC=6,E是AB的中點(diǎn),P是BC邊上

的一動(dòng)點(diǎn),則PA+PE的最小值為;

(3)代數(shù)應(yīng)用:代數(shù)式+4+J(6-尤)2+36(0<x<6)的最小值為;

20.如圖,△ABC和AADE都是等腰直角三角形,Z.BAC=^DAE=90°,連接CE交與F,

連接BD交CE于點(diǎn)G,連接BE,下列結(jié)論:①BC=CE;@^CGD=90°;(3)^ADB=^AEB;

④2SBCDE=BD-CE;?BC2+DE2=BE2+CD2.正確的有.

D

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

21.如圖,ZAOB=30°,M,Q在OA上,P,N在OB上,OM=1,ON=V7,則MP+PQ+QN的最

22.如圖,已知NMON=30。,B為OM上一點(diǎn),BALON于A,四邊形ABCD為正方形,P為射線

BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90。得CE,連結(jié)BE,若AB=4,則BE的最

小值為.

23.在四邊形ABCD中,AD/7BC,ZABC=90°,AB=BC,E為AB上一點(diǎn),AE=AD,且BF〃CD,

AF_LCE的延長線于F.連接DE交對角線AC于H.下列結(jié)論:①△ACD/ACE;②AC垂直平分

ED;③CE=2BF;④CE平分NACB.其中結(jié)論正確的是.(填序號)

24.如圖,邊長為2的等邊三角形中,E是對稱軸力。上的一個(gè)動(dòng)點(diǎn),連接CE將線段CE繞點(diǎn)C順時(shí)針旋

轉(zhuǎn)60。得到CF,連接DF,則在點(diǎn)E運(yùn)動(dòng)過程中,。尸的最小值是.

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

25.當(dāng)整數(shù)x=時(shí),分式針的值為正整數(shù).

四'計(jì)算題

26.(-4x)?(2x2+3x-1).

27.先化簡,再求值:土舞b2一法I一盥,其中a=2-8,b=2+V3,

28.解方程(組)

⑴1+1/

2

⑵y)=9

+y+1=0

(3)V3x—2+V%+3=3

(4)bx2—2=2—2x2(b為常數(shù))

29.先化簡代數(shù)式(舟+芻)+-A-,然后在2,-2,0中取一個(gè)合適的a值代入求值.

a十,a—24

30.已知2x5m=5x2m,求m的值.

五'解答題

31.如圖,CB±AB,DAXAB,垂足分別為點(diǎn)B、A,BC=AD.求證:NCAD=/CBD.

32.如圖,在DABCD中,對角線AC,BD交于點(diǎn)O,經(jīng)過點(diǎn)O的直線交AB于E,交CD于F.求證:

OE=OF.

33.如圖,一塊鐵皮(圖中陰影部分),測得力B=3,BC=4,CD=12,AD13,ZB=90。.

求陰影部分面積.

34.已知。機(jī)=2,an=5、求(^他筌兀的值.

35.在△ABC中,AB=AC,AB1AC,D,E分別為平面內(nèi)兩點(diǎn),連接AD,AE,BD,CE,DE,使

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

乙BAD=ACAES.AD=AE.

①BD與CE有怎樣的數(shù)量關(guān)系,請說明理由;

②BD與CE有怎樣的位置關(guān)系,請說明理由;

(2)如圖2,若延長與CE相交于H,且BH過AC的中點(diǎn)N,NZX4E的角平分線交于F,過點(diǎn)A

作于M,已知2M=3,BN=7,EF:EH=5:2,設(shè)BD=y,FN=x,請用含x的代數(shù)式

表示y.

36.如圖,ADLBC于D,BD=AC+DC,若NBAC=110。,求NC的度數(shù).

六'作圖題

37.已知NMON=a,P為射線OM上的點(diǎn),OP=1.

(.1)如圖1,a=60°,A,B均為射線ON上的點(diǎn),OA=1,OB>OA,ZkPBC為等邊三角形,且O,

C兩點(diǎn)位于直線PB的異側(cè),連接AC.

①依題意將圖1補(bǔ)全;

②判斷直線AC與OM的位置關(guān)系并加以證明;

(2)若a=45。,Q為射線ON上一動(dòng)點(diǎn)(Q與O不重合),以PQ為斜邊作等腰直角△PQR,使O,

R兩點(diǎn)位于直線PQ的異側(cè),連接OR.根據(jù)(1)的解答經(jīng)驗(yàn),直接寫出APOR的面積.

七、綜合題

38.我們知道,若兩個(gè)有理數(shù)的積是1,則稱這兩個(gè)有理數(shù)互為倒數(shù).同樣的當(dāng)兩個(gè)實(shí)數(shù)(a+迎)與

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

(a-Vh)的積是1時(shí),我們?nèi)匀环Q這兩個(gè)實(shí)數(shù)互為倒數(shù).

(1)判斷(4+V2)與(4-V2)是否互為倒數(shù),并說明理由;

(2)若實(shí)數(shù)(返+750是(F-6)的倒數(shù),求x和y之間的關(guān)系.

圖1圖2

(1)【問題探究】

如圖1,在△4BC中,BC=8,點(diǎn)。為ZB上一點(diǎn),KAD=2BD,DE1BC于點(diǎn)E,若△4BC的面積為

24,求DE的長.

(2)【問題解決】

如圖2,某小區(qū)有一塊三角形空地4BC,其中4B=4C=50米,BC=60米,開發(fā)商計(jì)劃在這片空地

上進(jìn)行綠化和修建運(yùn)動(dòng)場地,在BC邊上選一點(diǎn)D,邊上取一點(diǎn)E,使得BE=?1B。,過點(diǎn)E作EF//BC

交ZC于點(diǎn)F,連接。E,在AZEF和ABOE區(qū)域內(nèi)綠化,在四邊形COEF區(qū)域內(nèi)修建運(yùn)動(dòng)場地.若設(shè)BD

的長為%(米),運(yùn)動(dòng)場地(四邊形CDEF)的面積為y(平方米).

①求y與%之間的函數(shù)關(guān)系式;

②運(yùn)動(dòng)場地(四邊形CDEF)的面積是否存在最大值?若存在,求出運(yùn)動(dòng)場地(四邊形CDEF)面積的

最大值及取得最大值時(shí)BD的長;若不存在,請說明理由.

八'實(shí)踐探究題

40.如圖

(1)【探索發(fā)現(xiàn)】如圖1,正方形的對角線相交于點(diǎn)O,點(diǎn)O又是正方形4/1的。的一個(gè)頂

點(diǎn),而且這兩個(gè)正方形的邊長相等,我們知道,無論正方形繞點(diǎn)O怎么轉(zhuǎn)動(dòng),總有4AE0W

ABFO,連接EF,求證:AE2+CF2=EF2.

(2)【類比遷移】如圖2,矩形4BCD的中心O是矩形4避130的一個(gè)頂點(diǎn),40與邊4B相交于點(diǎn)

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

E,品。與邊CB相交于點(diǎn)F,連接EF,矩形4道也1??衫@著點(diǎn)O旋轉(zhuǎn),判斷(1)中的結(jié)論是否成立,

若成立,請證明,若不成立,請說明理由;

(3)【遷移拓展】如圖3,在RtAACB中,ZC=90°,AC=3cm,BC=4cm,直角NEDF的頂點(diǎn)

D在邊AB的中點(diǎn)處,它的兩條邊DE和DF分別與直線?IC,BC相交于點(diǎn)E,F,NEDF可繞著點(diǎn)D旋轉(zhuǎn),

當(dāng)BF=1cm時(shí),直接寫出線段EF的長度.

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

答案解析部分

L【答案】C

2.【答案】B

3.【答案】D

4.【答案】A

5.【答案】A

6.【答案】B

7.【答案】A

8.【答案】A

9.【答案】B

10.【答案】B

H.【答案】A,C,D

12.【答案】B,C

13.【答案】A,B,D

14.【答案】A,B,D

15.【答案】A,C

16.【答案】AB=DC或者NA=ND

17.【答案】xN-1且x#l

18.【答案】14

19.【答案】(1)472

(2)3V5

(3)10

20.【答案】①②④⑤

21.【答案】2A/2

22.【答案】2V3+2

23.【答案】①②③④

24.【答案】1

25.【答案】2或3

26.【答案】解:原式=-8x3-12x2+4x.

27.【答案】解:個(gè)耍絲

。2—2ab+Z)2a—ba—b

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

_(a+b)(a-b)a—b2ab

(a—b)2a+ba—b

_12ab

-1-曰

_a—b—2ab

a-b'

當(dāng)a=2—V3,b=2+V3時(shí),

面狀—2—V3—2—A/3—2(2—V3)(2+A/3)——2-73—2—3+^/3

"2-V3-2-V3刁^一

28?【答案】(1)解:Sr+i=虛開

去分母得,3(x-1)+x2-l=6,

整理得,x2+3x-10=0,

解得,久1=2,久2——5,

經(jīng)檢驗(yàn),亞=2,%2=-5是原方程的解.

⑵解:[b-2=9①

、/+y+1=0②

由①得117飛

{x—y=—3(4J

③、④分別與②組成方程組得(a)*和(b)I/;;;;1。

解⑶得,仁二,晨二

方程組(b)無解,

所以,原方程組的解為:{:1:'

(3)解:V3x—2+7x+3=3

移項(xiàng)得,V3x-2=3-V%T3,

平方得,3%—2=9-6GTI+X+3

移項(xiàng),整理得,3后n=7-%

平方整理得,%2-23%+22=0,

解得,久1=1,久2=22

經(jīng)檢驗(yàn)%=1是原方程的根,尤=22是增根,

所以,原方程的根為:x=l;

(4)解:bx2-2=2-2x2(b為常數(shù))

移項(xiàng)合并得,(b+2)/=4

當(dāng)b+2W0時(shí),原方程無解;

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)_____________________________________

當(dāng)b+2>0時(shí),x2=,解得,%]=+2,冷=-/z7b+2

29.【答案】解:原式=(£:胎_2)?(a+2)(a-2)

=a2+4,

由分式有意義的條件可知:a=0,

原式=4.

30.【答案】解:由2x5m=5x2m得5m即S"142m■1=1,(|嚴(yán)1=1,因?yàn)榈讛?shù)|不等于。和

1,所以(f)?-1=(|)°,所以m-l=0,解得m=l

31.【答案】證明:VCBXAB,DAXAB,AD=BC,AB=BA,

/.△ABD^ABAC(HL)

/.ZD=ZC,

W/ZAED=ZBEC(對頂角相等),

AD=BC

/.△ADE^ABCE(AAS)

?.ZCAD=ZCBD.

32.【答案】證明:?.?四邊形ABCD是平行四邊形,

.,.OA=OC,AB〃CD

.,.ZOAE=ZOCF

VZAOE=ZCOF

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

.".△OAE^AOCF(ASA)

.\OE=OF

33.【答案】解:連接AC,

在Rt△ABC中,根據(jù)勾股定理,AC2=AB2+BC2=42+32=52.

AC=E>.

AC2+DC2=52+122=132=AD2.

???4ACD=90°.

11

?,.S陽影=S/ACD—SMBC=2X12X5-2-X3X4=24.

34.【答案】解:當(dāng)。爪=2,出1=5時(shí),

a3m-2n

=a?m+a2n

二(am)3.(曖)2

=2352

=8+25

8

=25-

35.【答案】(1)解:①BD=CE,理由如下:

??"BAC=乙DAE=90°,

J.^BAC-^DAC=2LDAE一^DAC,

即乙34。=/.CAE,

在△48。和△/(?£*中,

'AB=AC

Z-BAD=乙CAE,

.AD=AE

:.AABD三△ZCE(SZS),

:.BD=CE;

@BD1CE,理由如下:

延長BD交CE的延長線于點(diǎn)P,

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

由①知,

C./.ABD=/.ACE,

9:^ABD+乙DBC+乙ACB=90°,

:.Z.ACE+乙DBC+Z.ACB=90°,

VzP=180°-(ZXCE+乙DBC+zXCF)=90°,

:.BD1CE;

(2)解:由(1)知,CE=BD=y,

:.AN=CN,

在△ZMN和中,

2AMN=(CHN

乙ANM=(CNH,

AM=CH

:.△AMN=△CHNQAAS),

:.CH=AM=3,

:.CE-CH=EH=y-3,

???”是的角平分線,AD=AE,

?,?ZF垂直平分。E,

:.DF=EF,

?:EF:EH=5:2,

:?DF=EF=^EH,

?:DF=DN—BD-FN,DN=7,

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

-x-y=^EH,

即7—x—y=|-(y—3),

整理得y=竿一3%.

36.【答案】解:如圖,以A為圓心,AC長為半徑畫弧,交BC于點(diǎn)E,連接AE,

則AE=AC,CD=DE,NCAD=NEAD,又BD=AC+DC,BD=BE+DE,

,AE=AC=BE,AZB=ZBAE

.?.令NC=x,則NCAD=90°-x,ZB=ZBAE=110°-2(9O°-x)=110°-180°+2x=2x-70°,

由三角形內(nèi)角和定理得:x+2(90°-x)+2(2x-70°)=180°,解得:x=(寫)°.

37.【答案】(1)解:①如圖所示:

②結(jié)論:AC//OM..

理由:連接AP

VOA=OP=1,ZPOA=60°,

...△OAP是等邊三角形.

.\OP=PA,ZOPA=ZOAP=60°,

VAPBC是等邊三角形,

.\PB=PC,ZBPC=60°,

ZOPA+ZAPB=ZBPC+ZAPB,

即NOPB=NAPC,

.,.△OBP^AACP(SAS).

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

NPAC=NO=60。,

???NOPA=NPAC,

AAC/7OM.

(2)解:作PHLOQ于H,取PQ的中點(diǎn)K,連接HK,RK.

???/PHQ=NPRQ=90。,PK=KQ,

???HK=PK=KQ=RK,

???P,R,Q,H四點(diǎn)共圓,

AZRHQ=ZRPQ=45°,

???NRHQ=NPOQ=45。,

ARH/7OP,

?C_1x-/2x—1

??oAPOR—OAPOH—2X_x__——.

38.【答案】(1)解:因?yàn)?4+V2)(4-V2)=16-2=14*1,所以4+魚與4一魚不互為倒數(shù)

(2)解:因?yàn)?a+近)(y—日)=x-y,所以當(dāng)x-y=l時(shí),此兩數(shù)互為倒數(shù)

39.【答案】(1)解:過點(diǎn)/作ZF_LBC于點(diǎn)F,

vBC=8,SMBC=24,

AF—6,

vAD=2BD,

.■.AB=3BD,即器=會(huì)

??,AF1BC,DE1BC,

??.DE//AF,

人教版(2023)初中八年級數(shù)學(xué)期末試卷(含答案解析)

.DE_BD即強(qiáng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論