湖南省湘西土家族苗族自治州古丈縣達標名校2023-2024學年中考數(shù)學全真模擬試題含解析_第1頁
湖南省湘西土家族苗族自治州古丈縣達標名校2023-2024學年中考數(shù)學全真模擬試題含解析_第2頁
湖南省湘西土家族苗族自治州古丈縣達標名校2023-2024學年中考數(shù)學全真模擬試題含解析_第3頁
湖南省湘西土家族苗族自治州古丈縣達標名校2023-2024學年中考數(shù)學全真模擬試題含解析_第4頁
湖南省湘西土家族苗族自治州古丈縣達標名校2023-2024學年中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省湘西土家族苗族自治州古丈縣達標名校2023-2024學年中考數(shù)學全真模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2.如圖是一個空心圓柱體,其俯視圖是()A.B.C.D.3.下列圖形中,不是軸對稱圖形的是()A. B. C. D.4.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.5.下列運算正確的是()A.a(chǎn)4+a2=a4 B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2 D.b6÷b2=b36.某幾何體由若干個大小相同的小正方體搭成,其主視圖與左視圖如圖所示,則搭成這個幾何體的小正方體最少有()A.4個 B.5個 C.6個 D.7個7.下列運算正確的是()A.a(chǎn)2+a2=a4 B.(a+b)2=a2+b2 C.a(chǎn)6÷a2=a3 D.(﹣2a3)2=4a68.如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內心.若AF=2,則PQ的長度為何?()A.1 B.2 C.2﹣2 D.4﹣29.如圖,平行于x軸的直線與函數(shù),的圖象分別相交于A,B兩點,點A在點B的右側,C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.10.如圖中任意畫一個點,落在黑色區(qū)域的概率是()A. B. C.π D.50二、填空題(本大題共6個小題,每小題3分,共18分)11.某菜農搭建了一個橫截面為拋物線的大棚,尺寸如圖,若菜農身高為1.8m,他在不彎腰的情況下,在棚內的橫向活動范圍是__m.12.某航班每次飛行約有111名乘客,若飛機失事的概率為p=1.11115,一家保險公司要為乘客保險,許諾飛機一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險公司應向每位乘客至少收取_____元保險費才能保證不虧本.13.已知點P(1,2)關于x軸的對稱點為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為.14.因式分解:x2﹣4=.15.如圖,已知,D、E分別是邊AB、AC上的點,且設,,那么______用向量、表示16.我國古代數(shù)學著作《九章算術》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價幾何?”意思是:現(xiàn)在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設有人,則可列方程為__________.三、解答題(共8題,共72分)17.(8分)學了統(tǒng)計知識后,小紅就本班同學上學“喜歡的出行方式”進行了一次調查,圖(1)和圖(2)是她根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答以下問題:(1)補全條形統(tǒng)計圖,并計算出“騎車”部分所對應的圓心角的度數(shù).(2)若由3名“喜歡乘車”的學生,1名“喜歡騎車”的學生組隊參加一項活動,現(xiàn)欲從中選出2人擔任組長(不分正副),求出2人都是“喜歡乘車”的學生的概率,(要求列表或畫樹狀圖)18.(8分)先化簡,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根19.(8分)為上標保障我國海外維和部隊官兵的生活,現(xiàn)需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:設從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數(shù)關系式,并寫出x的取值范圍;求出最低費用,并說明費用最低時的調配方案.20.(8分)如圖①,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形.(1)試探究線段AE與CG的關系,并說明理由.(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=1.①線段AE、CG在(1)中的關系仍然成立嗎?若成立,請證明,若不成立,請寫出你認為正確的關系,并說明理由.②當△CDE為等腰三角形時,求CG的長.21.(8分)如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.22.(10分)關于x的一元二次方程x2﹣x﹣(m+2)=0有兩個不相等的實數(shù)根.求m的取值范圍;若m為符合條件的最小整數(shù),求此方程的根.23.(12分)數(shù)學興趣小組為了解我校初三年級1800名學生的身體健康情況,從初三隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg至53kg的學生大約有多少名.24.2017年10月31日,在廣州舉行的世界城市日全球主場活動開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.(1)求甲種樹和乙種樹的單價;(2)按學校規(guī)劃,準備購買甲、乙兩種樹共200棵,且甲種樹的數(shù)量不少于乙種樹的數(shù)量的,請設計出最省錢的購買方案,并說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、D【解析】

根據(jù)從上邊看得到的圖形是俯視圖,可得答案.【詳解】該空心圓柱體的俯視圖是圓環(huán),如圖所示:故選D.【點睛】本題考查了三視圖,明確俯視圖是從物體上方看得到的圖形是解題的關鍵.3、A【解析】

觀察四個選項圖形,根據(jù)軸對稱圖形的概念即可得出結論.【詳解】根據(jù)軸對稱圖形的概念,可知:選項A中的圖形不是軸對稱圖形.故選A.【點睛】此題主要考查了軸對稱圖形,軸對稱圖形的關鍵是尋找對稱軸,對稱軸可使圖形兩部分折疊后重合.4、D【解析】

找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;

左視圖有二列,從左往右分別有2,1個正方形;

俯視圖有三列,從上往下分別有3,1個正方形,

故選A.【點睛】本題考查了三視圖的知識,關鍵是掌握三視圖所看的位置.掌握定義是關鍵.此題主要考查了簡單組合體的三視圖,準確把握觀察角度是解題關鍵.5、B【解析】分析:根據(jù)合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質,逐一計算判斷即可.詳解:根據(jù)同類項的定義,可知a4與a2不是同類項,不能計算,故不正確;根據(jù)積的乘方,等于個個因式分別乘方,可得(x2y)3=x6y3,故正確;根據(jù)完全平方公式,可得(m-n)2=m2-2mn+n2,故不正確;根據(jù)同底數(shù)冪的除法,可知b6÷b2=b4,不正確.故選B.點睛:此題主要考查了合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質,熟記并靈活運用是解題關鍵.6、B【解析】

由主視圖和左視圖確定俯視圖的形狀,再判斷最少的正方體的個數(shù).【詳解】由主視圖和左視圖可確定所需正方體個數(shù)最少時俯視圖(數(shù)字為該位置小正方體的個數(shù))為:則搭成這個幾何體的小正方體最少有5個,故選B.【點睛】本題考查了由三視圖判斷幾何體,根據(jù)主視圖和左視圖畫出所需正方體個數(shù)最少的俯視圖是關鍵.【詳解】請在此輸入詳解!【點睛】請在此輸入點睛!7、D【解析】

根據(jù)完全平方公式、合并同類項、同底數(shù)冪的除法、積的乘方,即可解答.【詳解】A、a2+a2=2a2,故錯誤;B、(a+b)2=a2+2ab+b2,故錯誤;C、a6÷a2=a4,故錯誤;D、(-2a3)2=4a6,正確;故選D.【點睛】本題考查了完全平方公式、同底數(shù)冪的除法、積的乘方以及合并同類項,解決本題的關鍵是熟記公式和法則.8、C【解析】

先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計算出PQ即可.【詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點分別為△ACF、△CEF的內心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過點P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點P是△ACF的內心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【點睛】本題是三角形的內切圓與內心,主要考查了三角形的內心的特點,三角形的全等,解本題的關鍵是知道三角形的內心的意義.9、A【解析】【分析】設,,根據(jù)反比例函數(shù)圖象上點的坐標特征得出,根據(jù)三角形的面積公式得到,即可求出.【詳解】軸,,B兩點縱坐標相同,設,,則,,,,故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,三角形的面積,熟知點在函數(shù)的圖象上,則點的坐標滿足函數(shù)的解析式是解題的關鍵.10、B【解析】

抓住黑白面積相等,根據(jù)概率公式可求出概率.【詳解】因為,黑白區(qū)域面積相等,所以,點落在黑色區(qū)域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關鍵點:分清黑白區(qū)域面積關系.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

設拋物線的解析式為:y=ax2+b,由圖得知點(0,2.4),(1,0)在拋物線上,列方程組得到拋物線的解析式為:y=﹣x2+2.4,根據(jù)題意求出y=1.8時x的值,進而求出答案;【詳解】設拋物線的解析式為:y=ax2+b,由圖得知:點(0,2.4),(1,0)在拋物線上,∴,解得:,∴拋物線的解析式為:y=﹣x2+2.4,∵菜農的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負值舍去)故他在不彎腰的情況下,橫向活動范圍是:1米,故答案為1.12、21【解析】每次約有111名乘客,如飛機一旦失事,每位乘客賠償41萬人民幣,共計4111萬元,由題意可得一次飛行中飛機失事的概率為P=1.11115,所以賠償?shù)腻X數(shù)為41111111×1.11115=2111元,即可得至少應該收取保險費每人=21元.13、y=﹣1x+1.【解析】

由對稱得到P′(1,﹣2),再代入解析式得到k的值,再根據(jù)平移得到新解析式.【詳解】∵點P(1,2)關于x軸的對稱點為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點:一次函數(shù)圖象與幾何變換.14、(x+2)(x-2).【解析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考點:因式分解-運用公式法15、【解析】

在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的運算可得出結果.【詳解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案為.【點睛】本題考查了相似三角形的判定和性質以及向量的運算.16、【解析】

根據(jù)每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應的方程,本題得以解決【詳解】解:由題意可設有人,列出方程:故答案為【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.三、解答題(共8題,共72分)17、(1)補全條形統(tǒng)計圖見解析;“騎車”部分所對應的圓心角的度數(shù)為108°;(2)2人都是“喜歡乘車”的學生的概率為.【解析】

(1)從兩圖中可以看出乘車的有25人,占了50%,即可得共有學生50人;總人數(shù)減乘車的和騎車的人數(shù)就是步行的人數(shù),根據(jù)數(shù)據(jù)補全直方圖即可;要求扇形的度數(shù)就要先求出騎車的占的百分比,然后再求度數(shù);(2)列出從這4人中選兩人的所有等可能結果數(shù),2人都是“喜歡乘車”的學生的情況有3種,然后根據(jù)概率公式即可求得.【詳解】(1)被調查的總人數(shù)為25÷50%=50人;則步行的人數(shù)為50﹣25﹣15=10人;如圖所示條形圖,“騎車”部分所對應的圓心角的度數(shù)=×360°=108°;(2)設3名“喜歡乘車”的學生表示為A、B、C,1名“喜歡騎車”的學生表示為D,則有AB、AC、AD、BC、BD、CD這6種等可能的情況,其中2人都是“喜歡乘車”的學生有3種結果,所以2人都是“喜歡乘車”的學生的概率為.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?8、2m2+2m+5;1;【解析】

先利用完全平方公式化簡,再去括號合并得到最簡結果,把已知等式變形后代入值計算即可.【詳解】解:原式=2(m2﹣2m+1)+1m+3,=2m2﹣4m+2+1m+3=2m2+2m+5,∵m是方程2x2+2x﹣1=0的根,∴2m2+2m﹣1=0,即2m2+2m=1,∴原式=2m2+2m+5=1.【點睛】此題考查了整式的化簡求值以及方程的解,利用整體代換思想可使運算更簡單.19、(1)y=﹣8x+2560(30≤x≤1);(2)把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.【解析】試題分析:(1)設從甲倉庫運x噸往A港口,根據(jù)題意得從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,再由等量關系:總運費=甲倉庫運往A港口的費用+甲倉庫運往B港口的費用+乙倉庫運往A港口的費用+乙倉庫運往B港口的費用列式并化簡,即可得總運費y(元)與x(噸)之間的函數(shù)關系式;由題意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因為所得的函數(shù)為一次函數(shù),由增減性可知:y隨x增大而減少,則當x=1時,y最小,并求出最小值,寫出運輸方案.試題解析:(1)設從甲倉庫運x噸往A港口,則從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范圍是30≤x≤1.(2)由(1)得y=﹣8x+2560y隨x增大而減少,所以當x=1時總運費最小,當x=1時,y=﹣8×1+2560=1920,此時方案為:把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.考點:一次函數(shù)的應用.20、(1)AE=CG,AE⊥CG,理由見解析;(2)①位置關系保持不變,數(shù)量關系變?yōu)?;理由見解析;②當△CDE為等腰三角形時,CG的長為或或.【解析】試題分析:證明≌即可得出結論.①位置關系保持不變,數(shù)量關系變?yōu)樽C明根據(jù)相似的性質即可得出.分成三種情況討論即可.試題解析:(1)理由是:如圖1,∵四邊形EFGD是正方形,∴∵四邊形ABCD是正方形,∴∴∴≌∴∵∴∴即(2)①位置關系保持不變,數(shù)量關系變?yōu)槔碛墒牵喝鐖D2,連接EG、DF交于點O,連接OC,∵四邊形EFGD是矩形,∴Rt中,OG=OF,Rt中,∴∴D、E、F、C、G在以點O為圓心的圓上,∵∴DF為的直徑,∵∴EG也是的直徑,∴∠ECG=90°,即∴∵∴∵∴∴②由①知:∴設分三種情況:(i)當時,如圖3,過E作于H,則EH∥AD,∴∴由勾股定理得:∴(ii)當時,如圖1,過D作于H,∵∴∴∴∴∴(iii)當時,如圖5,∴∴綜上所述,當為等腰三角形時,CG的長為或或.點睛:兩組角對應,兩三角形相似.21、(1)見解析(2)25【解析】試題分析:(1)利用平行四邊形的性質和菱形的性質即可判定四邊形AECF是菱形;(2)連接EF交于點O,運用解直角三角形的知識點,可以求得AC與EF的長,再利用菱形的面積公式即可求得菱形AECF的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,點E是BC邊的中點,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四邊形AECF是平行四邊形.∴平行四邊形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53連接EF交于點O,∴AC⊥EF于點O,點O是AC中點.∴OE=12∴EF=53∴菱形AECF的面積是12AC·EF=25考點:1.菱形的性質和面積;2.平行四邊形的性質;3.解直角三角形.22、(1)m>;(2)x1=0,x2=1.【解析】

解答本題的關鍵是是掌握好一元二次方程的根的判別式.(1)求出△=5+4m>0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論