福建省郊尾、楓江、蔡襄教研小片區(qū)重點(diǎn)中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
福建省郊尾、楓江、蔡襄教研小片區(qū)重點(diǎn)中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
福建省郊尾、楓江、蔡襄教研小片區(qū)重點(diǎn)中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
福建省郊尾、楓江、蔡襄教研小片區(qū)重點(diǎn)中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
福建省郊尾、楓江、蔡襄教研小片區(qū)重點(diǎn)中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

福建省郊尾、楓江、蔡襄教研小片區(qū)重點(diǎn)中學(xué)2024年中考數(shù)學(xué)適應(yīng)性模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.夏新同學(xué)上午賣廢品收入13元,記為+13元,下午買舊書支出9元,記為()元.A.+4B.﹣9C.﹣4D.+92.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣63.關(guān)于x的一元二次方程x2+2x+k+1=0的兩個(gè)實(shí)根x1,x2,滿足x1+x2﹣x1x2<﹣1,則k的取值范圍在數(shù)軸上表示為()A. B.C. D.4.若正多邊形的一個(gè)內(nèi)角是150°,則該正多邊形的邊數(shù)是()A.6B.12C.16D.185.實(shí)數(shù)a,b,c,d在數(shù)軸上的對應(yīng)點(diǎn)的位置如圖所示,下列結(jié)論①a<b;②|b|=|d|;③a+c=a;④ad>0中,正確的有()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)6.如圖,在平行四邊形ABCD中,點(diǎn)E在邊DC上,DE:EC=3:1,連接AE交BD于點(diǎn)F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:17.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點(diǎn)F,則的面積為()A.4 B.6 C.8 D.108.若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()A.有最大值 B.有最大值 C.有最小值 D.有最小值9.若一個(gè)多邊形的內(nèi)角和為360°,則這個(gè)多邊形的邊數(shù)是(

)A.3

B.4

C.5

D.610.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.1011.已知:如圖,點(diǎn)P是正方形ABCD的對角線AC上的一個(gè)動(dòng)點(diǎn)(A、C除外),作PE⊥AB于點(diǎn)E,作PF⊥BC于點(diǎn)F,設(shè)正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是()A. B. C. D.12.設(shè)x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為()A.6 B.8 C.14 D.16二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在平面直角坐標(biāo)系中,矩形活動(dòng)框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點(diǎn)O為AB的中點(diǎn),固定點(diǎn)A、B,把這個(gè)矩形活動(dòng)框架沿箭頭方向推,使D落在y軸的正半軸上點(diǎn)D′處,點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為______.14.若不等式組x<4x<m的解集是x<4,則m15.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為_______.16.九(5)班有男生27人,女生23人,班主任發(fā)放準(zhǔn)考證時(shí),任意抽取一張準(zhǔn)考證,恰好是女生的準(zhǔn)考證的概率是________________.17.如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當(dāng)點(diǎn)C落在直線y=﹣2x﹣6上時(shí),則點(diǎn)C沿x軸向左平移了_____個(gè)單位長度.18.若關(guān)于x的方程x2-mx+m=0有兩個(gè)相等實(shí)數(shù)根,則代數(shù)式2m2-8m+3的值為__________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖有A、B兩個(gè)大小均勻的轉(zhuǎn)盤,其中A轉(zhuǎn)盤被分成3等份,B轉(zhuǎn)盤被分成4等份,并在每一份內(nèi)標(biāo)上數(shù)字.小明和小紅同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線時(shí)視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的k,將B轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的b.請用列表或畫樹狀圖的方法寫出所有的可能;求一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限的概率.20.(6分)△ABC內(nèi)接于⊙O,AC為⊙O的直徑,∠A=60°,點(diǎn)D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點(diǎn)G,在OG上取點(diǎn)F,使OF=2OE,延長BD到點(diǎn)M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.21.(6分)在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與y軸交于點(diǎn),與反比例函數(shù)

的圖象交于點(diǎn).求反比例函數(shù)的表達(dá)式和一次函數(shù)表達(dá)式;若點(diǎn)C是y軸上一點(diǎn),且,直接寫出點(diǎn)C的坐標(biāo).22.(8分)如圖,在規(guī)格為8×8的邊長為1個(gè)單位的正方形網(wǎng)格中(每個(gè)小正方形的邊長為1),△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,且直線m、n互相垂直.(1)畫出△ABC關(guān)于直線n的對稱圖形△A′B′C′;(2)直線m上存在一點(diǎn)P,使△APB的周長最?。虎僭谥本€m上作出該點(diǎn)P;(保留畫圖痕跡)②△APB的周長的最小值為.(直接寫出結(jié)果)23.(8分)某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結(jié)構(gòu)總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:該公司“高級技工”有名;所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;小張到這家公司應(yīng)聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個(gè)數(shù)據(jù)向小張介紹員工的月工資實(shí)際水平更合理些;去掉四個(gè)管理人員的工資后,請你計(jì)算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實(shí)際水平.24.(10分)已知關(guān)于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當(dāng)a為何值時(shí),方程的根僅有唯一的值?求出此時(shí)a的值及方程的根.25.(10分)如圖,點(diǎn)A是直線AM與⊙O的交點(diǎn),點(diǎn)B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點(diǎn)C,OC平分∠AOB,∠B=60°.求證:AM是⊙O的切線;若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號).26.(12分)在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長均為1.格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(﹣2,0),(﹣3,3).(1)請?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系,寫出點(diǎn)B的坐標(biāo);(2)把△ABC繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,畫出△A1B1C1,寫出點(diǎn)B1的坐標(biāo);(3)以坐標(biāo)原點(diǎn)O為位似中心,相似比為2,把△A1B1C1放大為原來的2倍,得到△A2B2C2畫出△A2B2C2,使它與△AB1C1在位似中心的同側(cè);請?jiān)趚軸上求作一點(diǎn)P,使△PBB1的周長最小,并寫出點(diǎn)P的坐標(biāo).27.(12分)為看豐富學(xué)生課余文化生活,某中學(xué)組織學(xué)生進(jìn)行才藝比賽,每人只能從以下五個(gè)項(xiàng)目中選報(bào)一項(xiàng):.書法比賽,.繪畫比賽,.樂器比賽,.象棋比賽,.圍棋比賽根據(jù)學(xué)生報(bào)名的統(tǒng)計(jì)結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖:圖1各項(xiàng)報(bào)名人數(shù)扇形統(tǒng)計(jì)圖:圖2各項(xiàng)報(bào)名人數(shù)條形統(tǒng)計(jì)圖:根據(jù)以上信息解答下列問題:(1)學(xué)生報(bào)名總?cè)藬?shù)為人;(2)如圖1項(xiàng)目D所在扇形的圓心角等于;(3)請將圖2的條形統(tǒng)計(jì)圖補(bǔ)充完整;(4)學(xué)校準(zhǔn)備從書法比賽一等獎(jiǎng)獲得者甲、乙、丙、丁四名同學(xué)中任意選取兩名同學(xué)去參加全市的書法比賽,求恰好選中甲、乙兩名同學(xué)的概率.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

收入和支出是兩個(gè)相反的概念,故兩個(gè)數(shù)字分別為正數(shù)和負(fù)數(shù).【詳解】收入13元記為+13元,那么支出9元記作-9元【點(diǎn)睛】本題主要考查了正負(fù)數(shù)的運(yùn)用,熟練掌握正負(fù)數(shù)的概念是本題的關(guān)鍵.2、D【解析】

根據(jù)科學(xué)記數(shù)法的定義,科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.在確定n的值時(shí),看該數(shù)是大于或等于1還是小于1.當(dāng)該數(shù)大于或等于1時(shí),n為它的整數(shù)位數(shù)減1;當(dāng)該數(shù)小于1時(shí),-n為它第一個(gè)有效數(shù)字前0的個(gè)數(shù)(含小數(shù)點(diǎn)前的1個(gè)0).【詳解】解:0.0000025第一個(gè)有效數(shù)字前有6個(gè)0(含小數(shù)點(diǎn)前的1個(gè)0),從而.故選D.3、D【解析】試題分析:根據(jù)根的判別式和根與系數(shù)的關(guān)系列出不等式,求出解集.解:∵關(guān)于x的一元二次方程x2+2x+k+1=0有兩個(gè)實(shí)根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數(shù)軸上表示為:,故選D.點(diǎn)評:本題考查了根的判別式、根與系數(shù)的關(guān)系,在數(shù)軸上找到公共部分是解題的關(guān)鍵.4、B【解析】設(shè)多邊形的邊數(shù)為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.5、B【解析】

根據(jù)數(shù)軸上的點(diǎn)表示的數(shù)右邊的總比左邊的大,有理數(shù)的運(yùn)算,絕對值的意義,可得答案.【詳解】解:由數(shù)軸,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正確;②|b|=|d|,故②正確;③a+c=a,故③正確;④ad<0,故④錯(cuò)誤;故選B.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,利用數(shù)軸上的點(diǎn)表示的數(shù)右邊的總比左邊的大,有理數(shù)的運(yùn)算,絕對值的意義是解題關(guān)鍵.6、B【解析】

可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.7、C【解析】

根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個(gè)圖中BD=AB-AD=4,第三個(gè)圖中AB=AD-BD=2,

因?yàn)锽C∥DE,

所以BF:DE=AB:AD,

所以BF=2,CF=BC-BF=4,

所以△CEF的面積=CF?CE=8;

故選:C.點(diǎn)睛:

本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識點(diǎn).8、B【解析】

解:∵一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數(shù)有最大值,∴最大值為,故選B.9、B【解析】

利用多邊形的內(nèi)角和公式求出n即可.【詳解】由題意得:(n-2)×180°=360°,解得n=4;故答案為:B.【點(diǎn)睛】本題考查多邊形的內(nèi)角和,解題關(guān)鍵在于熟練掌握公式.10、D【解析】

根據(jù)有理數(shù)乘法法則計(jì)算.【詳解】﹣2×(﹣5)=+(2×5)=10.故選D.【點(diǎn)睛】考查了有理數(shù)的乘法法則,(1)兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;(2)任何數(shù)同0相乘,都得0;(3)幾個(gè)不等于0的數(shù)相乘,積的符號由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;(4)幾個(gè)數(shù)相乘,有一個(gè)因數(shù)為0時(shí),積為0.11、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個(gè)正方形的邊長.則y=2x,為正比例函數(shù).故選A.12、C【解析】

根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1?x2=-5,再變形x12+x22得到(x1+x2)2-2x1?x2,然后利用代入計(jì)算即可.【詳解】∵一元二次方程x2-2x-5=0的兩根是x1、x2,

∴x1+x2=2,x1?x2=-5,

∴x12+x22=(x1+x2)2-2x1?x2=22-2×(-5)=1.

故選C.【點(diǎn)睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根為x1,x2,則x1+x2=-,x1?x2=.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(2,1)【解析】

由已知條件得到AD′=AD=,AO=AB=1,根據(jù)勾股定理得到OD′==1,于是得到結(jié)論.【詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,

∴C′(2,1),

故答案為:(2,1)【點(diǎn)睛】本題考查了矩形的性質(zhì),坐標(biāo)與圖形的性質(zhì),勾股定理,正確的識別圖形是解題的關(guān)鍵.14、m≥1.【解析】∵不等式組x<4x<m的解集是x∴m≥1,故答案為m≥1.15、【解析】

設(shè)⊙O半徑為r,根據(jù)勾股定理列方程求出半徑r,由勾股定理依次求BE和EC的長.【詳解】連接BE,設(shè)⊙O半徑為r,則OA=OD=r,OC=r-2,

∵OD⊥AB,

∴∠ACO=90°,

AC=BC=AB=4,

在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,

r=5,

∴AE=2r=10,

∵AE為⊙O的直徑,

∴∠ABE=90°,

由勾股定理得:BE=6,

在Rt△ECB中,EC=.故答案是:.【點(diǎn)睛】考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.16、23【解析】

用女生人數(shù)除以總?cè)藬?shù)即可.【詳解】由題意得,恰好是女生的準(zhǔn)考證的概率是2350故答案為:2350【點(diǎn)睛】此題考查了概率公式,如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=mn17、1【解析】

先根據(jù)勾股定理求得AC的長,從而得到C點(diǎn)坐標(biāo),然后根據(jù)平移的性質(zhì),將C點(diǎn)縱軸代入直線解析式求解即可得到答案.【詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點(diǎn)C的坐標(biāo)為(﹣1,1).當(dāng)y=﹣2x﹣6=1時(shí),x=﹣5,∵﹣1﹣(﹣5)=1,∴點(diǎn)C沿x軸向左平移1個(gè)單位長度才能落在直線y=﹣2x﹣6上.故答案為1.【點(diǎn)睛】本題主要考查平移的性質(zhì),解此題的關(guān)鍵在于先利用勾股定理求得相關(guān)點(diǎn)的坐標(biāo),然后根據(jù)平移的性質(zhì)將其縱坐標(biāo)代入直線函數(shù)式求解即可.18、1.【解析】

根據(jù)方程的系數(shù)結(jié)合根的判別式即可得出△=m2﹣4m=0,將其代入2m2﹣8m+1中即可得出結(jié)論.【詳解】∵關(guān)于x的方程x2﹣mx+m=0有兩個(gè)相等實(shí)數(shù)根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案為1.【點(diǎn)睛】本題考查了根的判別式,熟練掌握“當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根”是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)答案見解析;(2).【解析】

(1)k可能的取值為-1、-2、-3,b可能的取值為-1、-2、3、4,所以將所有等可能出現(xiàn)的情況用列表方式表示出來即可.(2)判斷出一次函數(shù)y=kx+b經(jīng)過一、二、四象限時(shí)k、b的正負(fù),在列表中找出滿足條件的情況,利用概率的基本概念即可求出一次函數(shù)y=kx+b經(jīng)過一、二、四象限的概率.【詳解】解:(1)列表如下:所有等可能的情況有12種;(2)一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限時(shí),k<0,b>0,情況有4種,則P==.20、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】

(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點(diǎn)M作AB的平行線交AC于點(diǎn)Q,過點(diǎn)D作DN垂直EG于點(diǎn)N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結(jié)合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如圖3所示,過點(diǎn)M作AB的平行線交AC于點(diǎn)Q,過點(diǎn)D作DN垂直EG于點(diǎn)N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四邊形MQOG為平行四邊形,設(shè)AD為x,則OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.故答案為(1)證明見解析;(2)證明見解析;(3)CE=.【點(diǎn)睛】本題考查圓的相關(guān)性質(zhì)以及與圓有關(guān)的計(jì)算,全等三角形的性質(zhì)和判定,第三問構(gòu)造全等三角形找到與∠BMF相等的角為解題的關(guān)鍵.21、(1)y=,y=-x+1;(2)C(0,3+1)或C(0,1-3).【解析】

(1)依據(jù)一次函數(shù)的圖象與軸交于點(diǎn),與反比例函數(shù)的圖象交于點(diǎn),即可得到反比例函數(shù)的表達(dá)式和一次函數(shù)表達(dá)式;(2)由,可得:,即可得到,再根據(jù),可得或,即可得出點(diǎn)的坐標(biāo).【詳解】(1)∵雙曲線過,將代入,解得:.∴所求反比例函數(shù)表達(dá)式為:.∵點(diǎn),點(diǎn)在直線上,∴,,∴,∴所求一次函數(shù)表達(dá)式為.(2)由,可得:,∴.又∵,∴或,∴,或,.【點(diǎn)睛】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)的解析式和反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.22、(1)詳見解析;(2)①詳見解析;②.【解析】

(1)根據(jù)軸對稱的性質(zhì),可作出△ABC關(guān)于直線n的對稱圖形△A′B′C′;

(2)①作點(diǎn)B關(guān)于直線m的對稱點(diǎn)B'',連接B''A與x軸的交點(diǎn)為點(diǎn)P;

②由△ABP的周長=AB+AP+BP=AB+AP+B''P,則當(dāng)AP與PB''共線時(shí),△APB的周長有最小值.【詳解】解:(1)如圖△A′B′C′為所求圖形.(2)①如圖:點(diǎn)P為所求點(diǎn).②∵△ABP的周長=AB+AP+BP=AB+AP+B''P∴當(dāng)AP與PB''共線時(shí),△APB的周長有最小值.∴△APB的周長的最小值A(chǔ)B+AB''=+3故答案為+3【點(diǎn)睛】本題考查軸對稱變換,勾股定理,最短路徑問題,解題關(guān)鍵是熟練掌握軸對稱的性質(zhì).23、(1)16人;(2)工中位數(shù)是1700元;眾數(shù)是1600元;(3)用1700元或1600元來介紹更合理些.(4)能反映該公司員工的月工資實(shí)際水平.【解析】

(1)用總?cè)藬?shù)50減去其它部門的人數(shù);(2)根據(jù)中位數(shù)和眾數(shù)的定義求解即可;(3)由平均數(shù)、眾數(shù)、中位數(shù)的特征可知,平均數(shù)易受極端數(shù)據(jù)的影響,用眾數(shù)和中位數(shù)映該公司員工的月工資實(shí)際水平更合適些;(4)去掉極端數(shù)據(jù)后平均數(shù)可以反映該公司員工的月工資實(shí)際水平.【詳解】(1)該公司“高級技工”的人數(shù)=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工資數(shù)從小到大排列,第25和第26分別是:1600元和1800元,因而中位數(shù)是1700元;在這些數(shù)中1600元出現(xiàn)的次數(shù)最多,因而眾數(shù)是1600元;(3)這個(gè)經(jīng)理的介紹不能反映該公司員工的月工資實(shí)際水平.用1700元或1600元來介紹更合理些.(4)(元).能反映該公司員工的月工資實(shí)際水平.24、(3)a=,方程的另一根為;(2)答案見解析.【解析】

(3)把x=2代入方程,求出a的值,再把a(bǔ)代入原方程,進(jìn)一步解方程即可;(2)分兩種情況探討:①當(dāng)a=3時(shí),為一元一次方程;②當(dāng)a≠3時(shí),利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當(dāng)a=3時(shí),方程為2x=3,解得:x=3.②當(dāng)a≠3時(shí),由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當(dāng)a=2時(shí),原方程為:x2+2x+3=3,解得:x3=x2=-3;當(dāng)a=3時(shí),原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當(dāng)a=3,3,2時(shí),方程僅有一個(gè)根,分別為3,3,-3.考點(diǎn):3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應(yīng)用.25、(1)見解析;(2)【解析】

(1)根據(jù)題意,可得△BOC的等邊三角形,進(jìn)而可得∠BCO=∠BOC,根據(jù)角平分線的性質(zhì),可證得BD∥OA,根據(jù)∠BDM=90°,進(jìn)而得到∠OAM=90°,即可得證;(2)連接

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論