版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省大連高新區(qū)名校聯(lián)盟重點中學2024屆中考數(shù)學對點突破模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.的相反數(shù)是()A. B.- C. D.2.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=23.關于x的方程x2﹣3x+k=0的一個根是2,則常數(shù)k的值為()A.1 B.2 C.﹣1 D.﹣24.如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,則DE的長為()A.6 B.8 C.10 D.125.△ABC在正方形網格中的位置如圖所示,則cosB的值為()A. B. C. D.26.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)7.已知方程的兩個解分別為、,則的值為()A. B. C.7 D.38.下列運算不正確的是A.a5+C.2a29.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優(yōu)弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π10.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉過的角度是()A.60° B.45° C.15° D.90°二、填空題(本大題共6個小題,每小題3分,共18分)11.在如圖所示的正方形方格紙中,每個小的四邊形都是相同的正方形,A、B、C、D都是格點,AB與CD相交于M,則AM:BM=__.12.如圖所示,三角形ABC的面積為1cm1.AP垂直∠B的平分線BP于P.則與三角形PBC的面積相等的長方形是()A.B.C.D.13.若,,則代數(shù)式的值為__________.14.如圖,正方形OABC與正方形ODEF是位似圖形,點O為位似中心,位似比為2:3,點B、E在第一象限,若點A的坐標為(1,0),則點E的坐標是______.15.如圖所示,四邊形ABCD中,,對角線AC、BD交于點E,且,,若,,則CE的長為_____.16.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應,若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.三、解答題(共8題,共72分)17.(8分)如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.求證:AM是⊙O的切線;若⊙O的半徑為4,求圖中陰影部分的面積(結果保留π和根號).18.(8分)閱讀材料:已知點和直線,則點P到直線的距離d可用公式計算.例如:求點到直線的距離.
解:因為直線可變形為,其中,所以點到直線的距離為:.根據(jù)以上材料,求:點到直線的距離,并說明點P與直線的位置關系;已知直線與平行,求這兩條直線的距離.19.(8分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.20.(8分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數(shù)繪制成如圖所示的折線統(tǒng)計圖.(1)根據(jù)圖中所給信息填寫下表:投中個數(shù)統(tǒng)計平均數(shù)中位數(shù)眾數(shù)A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩(wěn)定性考慮應該選派誰?請你利用學過的統(tǒng)計量對問題進行分析說明.21.(8分)在國家的宏觀調控下,某市的商品房成交價由去年10月份的14000元/下降到12月份的11340元/.求11、12兩月份平均每月降價的百分率是多少?如果房價繼續(xù)回落,按此降價的百分率,你預測到今年2月份該市的商品房成交均價是否會跌破10000元/?請說明理由22.(10分)已知反比例函數(shù)的圖象經過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當y1﹣y2=4時,求m的值;(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).23.(12分)△ABC在平面直角坐標系中的位置如圖所示.畫出△ABC關于y軸對稱的△A1B1C1;將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;觀察△A1B1C1和△A2B2C2,它們是否關于某條直線對稱?若是,請在圖上畫出這條對稱軸.24.如圖,二次函數(shù)的圖象與x軸的一個交點為,另一個交點為A,且與y軸相交于C點求m的值及C點坐標;在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由為拋物線上一點,它關于直線BC的對稱點為Q當四邊形PBQC為菱形時,求點P的坐標;點P的橫坐標為,當t為何值時,四邊形PBQC的面積最大,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.【點睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關鍵.2、A【解析】
根據(jù)二次根式的性質對A進行判斷;根據(jù)二次根式的加減法對B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.3、B【解析】
根據(jù)一元二次方程的解的定義,把x=2代入得4-6+k=0,然后解關于k的方程即可.【詳解】把x=2代入得,4-6+k=0,解得k=2.故答案為:B.【點睛】本題主要考查了一元二次方程的解,掌握一元二次方程的定義,把已知代入方程,列出關于k的新方程,通過解新方程來求k的值是解題的關鍵.4、C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四邊形BFED是平行四邊形,∴BD=EF,∴,解得:DE=10.故選C.5、A【解析】
解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.6、C【解析】
直接利用位似圖形的性質得出對應點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質,數(shù)形結合思想解題是本題的解題關鍵.7、D【解析】
由根與系數(shù)的關系得出x1+x2=5,x1?x2=2,將其代入x1+x2?x1?x2中即可得出結論.【詳解】解:∵方程x2?5x+2=0的兩個解分別為x1,x2,∴x1+x2=5,x1?x2=2,∴x1+x2?x1?x2=5?2=1.故選D.【點睛】本題考查了根與系數(shù)的關系,解題的關鍵是根據(jù)根與系數(shù)的關系得出x1+x2=5,x1?x2=2.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)根與系數(shù)的關系得出兩根之和與兩根之積是關鍵.8、B【解析】(-2a9、A【解析】
利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據(jù)弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了圓周角定理和弧長公式.10、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉過的角度是15°.故選C.考點:解直角三角形的應用.二、填空題(本大題共6個小題,每小題3分,共18分)11、5:1【解析】
根據(jù)題意作出合適的輔助線,然后根據(jù)三角形相似即可解答本題.【詳解】解:作AE∥BC交DC于點E,交DF于點F,設每個小正方形的邊長為a,則△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案為:5:1.【點睛】本題考查相似三角形的判定與性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.12、B【解析】
過P點作PE⊥BP,垂足為P,交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可證明三角形PBC的面積.【詳解】解:過P點作PE⊥BP,垂足為P,交BC于E,∵AP垂直∠B的平分線BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面積=三角形ABC的面積=cm1,選項中只有B的長方形面積為cm1,故選B.13、-12【解析】分析:對所求代數(shù)式進行因式分解,把,,代入即可求解.詳解:,,,故答案為:點睛:考查代數(shù)式的求值,掌握提取公因式法和公式法進行因式分解是解題的關鍵.14、(,)【解析】
由題意可得OA:OD=2:3,又由點A的坐標為(1,0),即可求得OD的長,又由正方形的性質,即可求得E點的坐標.【詳解】解:∵正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為2:3,∴OA:OD=2:3,∵點A的坐標為(1,0),即OA=1,∴OD=,∵四邊形ODEF是正方形,∴DE=OD=.∴E點的坐標為:(,).故答案為:(,).【點睛】此題考查了位似變換的性質與正方形的性質,注意理解位似變換與相似比的定義是解此題的關鍵.15、【解析】
此題有等腰三角形,所以可作BH⊥CD,交EC于點G,利用三線合一性質及鄰補角互補可得∠BGD=120°,根據(jù)四邊形內角和360°,得到∠ABG+∠ADG=180°.此時再延長GB至K,使AK=AG,構造出等邊△AGK.易證△ABK≌△ADG,從而說明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關系求出CG長度,在Rt△DBH中利用勾股定理及三角函數(shù)知識得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設,則,,∴,∴,在中,,解得,,當時,,所以,∴,,,作,設,,,,,∴,,∴,則,故答案為【點睛】本題主要考查了等腰三角形的性質及等邊三角形、全等三角形的判定和性質以及勾股定理的運用,綜合性較強,正確作出輔助線是解題的關鍵.16、或5或1.【解析】
根據(jù)以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【詳解】解:如圖(1)當在△ADE中,DE=5,當AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【點睛】本題主要考查等腰三角形的性質,注意分類討論的完整性.三、解答題(共8題,共72分)17、(1)見解析;(2)【解析】
(1)根據(jù)題意,可得△BOC的等邊三角形,進而可得∠BCO=∠BOC,根據(jù)角平分線的性質,可證得BD∥OA,根據(jù)∠BDM=90°,進而得到∠OAM=90°,即可得證;(2)連接AC,利用△AOC是等邊三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的長,則S陰影=S梯形OADC﹣S扇形OAC即可得解.【詳解】(1)證明:∵∠B=60°,OB=OC,∴△BOC是等邊三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA為⊙O的半徑,∴AM是⊙O的切線(2)解:連接AC,∵∠3=60°,OA=OC,∴△AOC是等邊三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=2,∴S陰影=S梯形OADC﹣S扇形OAC=×(4+2)×2﹣.【點睛】本題主要考查切線的性質與判定、扇形的面積等,解題關鍵在于用整體減去部分的方法計算.18、(1)點P在直線上,說明見解析;(2).【解析】
解:(1)求:(1)直線可變?yōu)椋f明點P在直線上;(2)在直線上取一點(0,1),直線可變?yōu)閯t,∴這兩條平行線的距離為.19、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.試題解析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質;2.全等三角形的判定;3.平移的性質.20、(1)7,9,7;(2)應該選派B;【解析】
(1)分別利用平均數(shù)、中位數(shù)、眾數(shù)分析得出答案;(2)利用方差的意義分析得出答案.【詳解】(1)A成績的平均數(shù)為(9+10+4+3+9+7)=7;眾數(shù)為9;B成績排序后為6,7,7,7,7,8,故中位數(shù)為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績更穩(wěn)定,從投籃穩(wěn)定性考慮應該選派B.【點睛】此題主要考查了中位數(shù)、眾數(shù)、方差的定義,方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.21、(1)10%;(1)會跌破10000元/m1.【解析】
(1)設11、11兩月平均每月降價的百分率是x,那么4月份的房價為14000(1-x),11月份的房價為14000(1-x)1,然后根據(jù)11月份的11340元/m1即可列出方程解決問題;(1)根據(jù)(1)的結果可以計算出今年1月份商品房成交均價,然后和10000元/m1進行比較即可作出判斷.【詳解】(1)設11、11兩月平均每月降價的百分率是x,則11月份的成交價是:14000(1-x),11月份的成交價是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合題意,舍去)答:11、11兩月平均每月降價的百分率是10%;(1)會跌破10000元/m1.如果按此降價的百分率繼續(xù)回落,估計今年1月份該市的商品房成交均價為:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份該市的商品房成交均價會跌破10000元/m1.【點睛】此題考查了一元二次方程的應用,和實際生活結合比較緊密,正確理解題意,找到關鍵的數(shù)量關系,然后列出方程是解題的關鍵.22、(1)m=1;(2)點P坐標為(﹣2m,1)或(6m,1).【解析】
(1)先根據(jù)反比例函數(shù)的圖象經過點A(﹣4,﹣3),利用待定系數(shù)法求出反比例函數(shù)的解析式為y=12x,再由反比例函數(shù)圖象上點的坐標特征得出y1=122m=6m,y2=126m=2m,然后根據(jù)y1﹣y2(2)設BD與x軸交于點E.根據(jù)三角形PBD的面積是8列出方程12?4【詳解】解:(1)設反比例函數(shù)的解析式為y=kx∵反比例函數(shù)的圖象經過點A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函數(shù)的解析式為y=12x∵反比例函數(shù)的圖象經過點B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,經檢驗,m=1是原方程的解,故m的值是1;(2)設BD與x軸交于點E,∵點B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面積是8,∴12∴12?4∴PE=4m,∵E(2m,1),點P在x軸上,∴點P坐標為(﹣2m,1)或(6m,1).【點睛】本題考查了待定系數(shù)法求反比例函數(shù)的解析式,反比例函數(shù)圖象上點的坐標特征以及三角形的面積,正確求出雙曲線的解析式是解題的關鍵.23、(1)見解析;(2)見解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是軸對稱圖形,對稱軸為圖中直線l:x=1,見解析.【解析】
(1)根據(jù)軸對稱圖形的性質,找出A、B、C的對稱點A1、B1、C1,畫出圖形即可;(2)根據(jù)平移的性質,△ABC向右平移6個單位,A、B、C三點的橫坐標加6,縱坐標不變;(1)根據(jù)軸對稱圖形的性質和頂點坐標,可得其對稱軸是l:x=1.【詳解】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程進度跟蹤與報告方案
- 施工項目成本控制方案
- 建筑物消防系統(tǒng)升級方案
- 防腐蝕設備選型與維護方案
- 儲備糧庫現(xiàn)代化改造實施方案
- 土石方開挖邊坡支護技術方案
- 個人素質提升與職業(yè)技能精進活動方案
- 消防安全評估與整改方案
- 技術方案編寫及評審標準化手冊
- 2026年人力資源管理專業(yè)人力資源管理方法論測試題
- 專業(yè)律師服務合同書樣本
- 反詐宣傳講座課件
- GB/T 6003.2-2024試驗篩技術要求和檢驗第2部分:金屬穿孔板試驗篩
- DB32T 4398-2022《建筑物掏土糾偏技術標準》
- (精確版)消防工程施工進度表
- 保險公司資產負債表、利潤表、現(xiàn)金流量表和所有者權益變動表格式
- 電磁流量說明書
- XX少兒棋院加盟協(xié)議
- 五年級數(shù)學應用題專題訓練50題
- 2021年四川省資陽市中考數(shù)學試卷
- 高處作業(yè)安全培訓課件
評論
0/150
提交評論