版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
峨眉山市第七教育發(fā)展聯(lián)盟2024屆高考數(shù)學(xué)倒計時模擬卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)2.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.3.設(shè)則以線段為直徑的圓的方程是()A. B.C. D.4.將函數(shù)圖象上所有點向左平移個單位長度后得到函數(shù)的圖象,如果在區(qū)間上單調(diào)遞減,那么實數(shù)的最大值為()A. B. C. D.5.函數(shù)的圖象與軸交點的橫坐標構(gòu)成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位6.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.7.已知當,,時,,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定8.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了9.已知函數(shù)的值域為,函數(shù),則的圖象的對稱中心為()A. B.C. D.10.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.12.已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第三象限C.的共軛復(fù)數(shù) D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若的最小值為,則實數(shù)的取值范圍是_________14.定義在封閉的平面區(qū)域內(nèi)任意兩點的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.15.已知數(shù)列為等比數(shù)列,,則_____.16.已知函數(shù).若在區(qū)間上恒成立.則實數(shù)的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎?wù)邤S各面標有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結(jié)束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎?wù)邚南渲腥我饷鰝€球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.18.(12分)設(shè)函數(shù),(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.19.(12分)已知(1)若,且函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)a的范圍;(2)若函數(shù)有兩個極值點,且存在滿足,令函數(shù),試判斷零點的個數(shù)并證明.20.(12分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若不等式恒成立,求實數(shù)a的取值范圍.21.(12分)在中,.(Ⅰ)求角的大?。唬á颍┤?,,求的值.22.(10分)2019年安慶市在大力推進城市環(huán)境、人文精神建設(shè)的過程中,居民生活垃圾分類逐漸形成意識.有關(guān)部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調(diào)查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調(diào)查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應(yīng)概率如下:贈送話費(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求X的分布列.附:,若,則,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
原問題轉(zhuǎn)化為有四個不同的實根,換元處理令t,對g(t)進行零點個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數(shù)零點問題,關(guān)鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.2、D【解析】
先計算,然后將進行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎(chǔ)題。3、A【解析】
計算的中點坐標為,圓半徑為,得到圓方程.【詳解】的中點坐標為:,圓半徑為,圓方程為.故選:.【點睛】本題考查了圓的標準方程,意在考查學(xué)生的計算能力.4、B【解析】
根據(jù)條件先求出的解析式,結(jié)合三角函數(shù)的單調(diào)性進行求解即可.【詳解】將函數(shù)圖象上所有點向左平移個單位長度后得到函數(shù)的圖象,則,設(shè),則當時,,,即,要使在區(qū)間上單調(diào)遞減,則得,得,即實數(shù)的最大值為,故選:B.【點睛】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調(diào)性求參數(shù),屬于中檔題.5、A【解析】依題意有的周期為.而,故應(yīng)左移.6、A【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)相等的條件,意在考查學(xué)生對這些知識的理解掌握水平,是基礎(chǔ)題.7、C【解析】
由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時,根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.8、C【解析】
假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.9、B【解析】
由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為010、D【解析】
設(shè),整理得到方程組,解方程組即可解決問題.【詳解】設(shè),因為,所以,所以,解得:,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,此點位于第四象限.故選D【點睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點知識,考查了方程思想,屬于基礎(chǔ)題.11、D【解析】
根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構(gòu)成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.12、D【解析】
利用的周期性先將復(fù)數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復(fù)平面內(nèi)對應(yīng)的點為,在第二象限,B錯誤;的共軛復(fù)數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復(fù)數(shù)的四則運算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
,可得在時,最小值為,時,要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當,,當且僅當時,等號成立.當時,為二次函數(shù),要想在處取最小,則對稱軸要滿足并且,即,解得.【點睛】本題考查分段函數(shù)的最值問題,對每段函數(shù)先進行分類討論,找到每段的最小值,然后再對兩段函數(shù)的最小值進行比較,得到結(jié)果,題目較綜合,屬于中檔題.14、【解析】
先找到平面區(qū)域內(nèi)任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區(qū)域任意兩點距離最大值為,而,當且僅當時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,一定要數(shù)形結(jié)合,本題屬于中檔題.15、81【解析】
設(shè)數(shù)列的公比為,利用等比數(shù)列通項公式求出,代入等比數(shù)列通項公式即可求解.【詳解】設(shè)數(shù)列的公比為,由題意知,因為,由等比數(shù)列通項公式可得,,解得,由等比數(shù)列通項公式可得,.故答案為:【點睛】本題考查等比數(shù)列通項公式;考查運算求解能力;屬于基礎(chǔ)題.16、【解析】
首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區(qū)間上恒成立,解得即故答案為:【點睛】本題考查一元二次不等式及函數(shù)的綜合問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;.【解析】
設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數(shù)學(xué)期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于??碱}.18、(1)或;(2)證明見解析【解析】
(1)將化簡,分類討論即可;(2)由(1)得,,展開后再利用基本不等式即可.【詳解】(1)當時,,所以或或解得或,因此不等式的解集的或(2)根據(jù),當且僅當時,等式成立.【點睛】本題考查絕對值不等式的解法、利用基本不等式證明不等式問題,考查學(xué)生基本的計算能力,是一道基礎(chǔ)題.19、(1)(2)函數(shù)有兩個零點和【解析】試題分析:(1)求導(dǎo)后根據(jù)函數(shù)在區(qū)間單調(diào)遞增,導(dǎo)函數(shù)大于或等于0(2)先判斷為一個零點,然后再求導(dǎo),根據(jù),化簡求得另一個零點。解析:(1)當時,,因為函數(shù)在上單調(diào)遞增,所以當時,恒成立.[來源:Z&X&X&K]函數(shù)的對稱軸為.①,即時,,即,解之得,解集為空集;②,即時,即,解之得,所以③,即時,即,解之得,所以綜上所述,當函數(shù)在區(qū)間上單調(diào)遞增.(2)∵有兩個極值點,∴是方程的兩個根,且函數(shù)在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減.∵∴函數(shù)也是在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減∵,∴是函數(shù)的一個零點.由題意知:∵,∴,∴∴,∴又=∵是方程的兩個根,∴,,∴∵函數(shù)圖像連續(xù),且在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴當時,,當時,當時,∴函數(shù)有兩個零點和.20、(1)(2)【解析】
(1)利用分段討論法去掉絕對值,結(jié)合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當時,則所以不等式的解集為.(2)等價于,而,故等價于,所以或,即或,所以實數(shù)a的取值范圍為.【點睛】本題考查含有絕對值的不等式解法、不等式恒成立問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度一般.21、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因為,所以,由正弦定理,得.又因為,,所以.又因為,所以.(II)由,得,由余弦定理,得,即,因為,解得.因為,所以.22、(1)(2)詳見解析【解析】
(1)利用頻率分布直方圖平均數(shù)等于小矩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 批發(fā)客戶合同范本
- 醫(yī)藥方面協(xié)議書
- 應(yīng)帝王課件教學(xué)課件
- 高熱病人排泄護理方法
- 妊娠期婦女的孕期尿失禁管理
- 蚌埠醫(yī)學(xué)院護理學(xué)護理臨終關(guān)懷
- 城市公共設(shè)施維護與更新合同
- 軟件技術(shù)解決方案工程師績效評定表
- 2025年社區(qū)圖書館五年建設(shè)數(shù)字化資源發(fā)展報告
- 維護教育公平助學(xué)承諾函范文5篇
- 2025年馬鞍山市住房公積金管理中心編外聘用人員招聘3名考試筆試模擬試題及答案解析
- 術(shù)后疲勞綜合征的炎癥反應(yīng)抑制策略
- 慢性阻塞性肺疾病的營養(yǎng)改善方案
- 貴州國企招聘:2025貴陽市衛(wèi)生健康投資有限公司招聘(公共基礎(chǔ)知識)綜合能力測試題附答案
- 2026年跨境電商培訓(xùn)課件
- 學(xué)術(shù)交流英語(學(xué)術(shù)寫作)智慧樹知到期末考試答案章節(jié)答案2024年哈爾濱工程大學(xué)
- GA/T 744-2013汽車車窗玻璃遮陽膜
- 部編版2021-2022學(xué)年六年級上冊期末考試語文試卷-附答案
- 方劑學(xué)溫里劑課件
- 熒光綠送貨單樣本excel模板
- 第3章回歸預(yù)測法ppt課件
評論
0/150
提交評論