2023-2024學(xué)年江蘇省揚(yáng)州市高郵市八校聯(lián)考中考數(shù)學(xué)模擬試題含解析_第1頁
2023-2024學(xué)年江蘇省揚(yáng)州市高郵市八校聯(lián)考中考數(shù)學(xué)模擬試題含解析_第2頁
2023-2024學(xué)年江蘇省揚(yáng)州市高郵市八校聯(lián)考中考數(shù)學(xué)模擬試題含解析_第3頁
2023-2024學(xué)年江蘇省揚(yáng)州市高郵市八校聯(lián)考中考數(shù)學(xué)模擬試題含解析_第4頁
2023-2024學(xué)年江蘇省揚(yáng)州市高郵市八校聯(lián)考中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省揚(yáng)州市高郵市八校聯(lián)考中考數(shù)學(xué)模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若一個圓錐的底面半徑為3cm,母線長為5cm,則這個圓錐的全面積為()A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm22.如圖所示:有理數(shù)在數(shù)軸上的對應(yīng)點(diǎn),則下列式子中錯誤的是()A. B. C. D.3.如圖,已知點(diǎn)P是雙曲線y=上的一個動點(diǎn),連結(jié)OP,若將線段OP繞點(diǎn)O逆時針旋轉(zhuǎn)90°得到線段OQ,則經(jīng)過點(diǎn)Q的雙曲線的表達(dá)式為()A.y= B.y=﹣ C.y= D.y=﹣4.如圖,在平面直角坐標(biāo)系中,點(diǎn)A在x軸的正半軸上,點(diǎn)B的坐標(biāo)為(0,4),將△ABO繞點(diǎn)B逆時針旋轉(zhuǎn)60°后得到△A'BO',若函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)O',則k的值為()A.2 B.4 C.4 D.85.計(jì)算(﹣ab2)3的結(jié)果是()A.﹣3ab2 B.a(chǎn)3b6 C.﹣a3b5 D.﹣a3b66.不等式組中兩個不等式的解集,在數(shù)軸上表示正確的是A. B.C. D.7.如圖,矩形ABCD中,E為DC的中點(diǎn),AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點(diǎn)F,AP、BE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④8.已知A樣本的數(shù)據(jù)如下:72,73,76,76,77,78,78,78,B樣本的數(shù)據(jù)恰好是A樣本數(shù)據(jù)每個都加2,則A,B兩個樣本的下列統(tǒng)計(jì)量對應(yīng)相同的是()A.平均數(shù) B.標(biāo)準(zhǔn)差 C.中位數(shù) D.眾數(shù)9.如圖是由兩個小正方體和一個圓錐體組成的立體圖形,其主視圖是()A. B. C. D.10.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.12.若關(guān)于的一元二次方程有兩個不相等的實(shí)數(shù)根,則的取值范圍為__________.13.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(diǎn)(m,n)在函數(shù)圖象上的概率是.14.如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.(1)計(jì)算△ABC的周長等于_____.(2)點(diǎn)P、點(diǎn)Q(不與△ABC的頂點(diǎn)重合)分別為邊AB、BC上的動點(diǎn),4PB=5QC,連接AQ、PC.當(dāng)AQ⊥PC時,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點(diǎn)P、Q的位置是如何找到的(不要求證明).___________________________.15.已知一次函數(shù)y=ax+b的圖象如圖所示,根據(jù)圖中信息請寫出不等式ax+b≥2的解集為___________.16.若am=2,an=3,則am+2n=______.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:x218.(8分)高考英語聽力測試期間,需要杜絕考點(diǎn)周圍的噪音.如圖,點(diǎn)A是某市一高考考點(diǎn),在位于A考點(diǎn)南偏西15°方向距離125米的點(diǎn)處有一消防隊(duì).在聽力考試期間,消防隊(duì)突然接到報警電話,告知在位于C點(diǎn)北偏東75°方向的F點(diǎn)處突發(fā)火災(zāi),消防隊(duì)必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)19.(8分)現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計(jì),在整個過程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.求y與x之間的函數(shù)關(guān)系式;設(shè)種植的總成本為w元,①求w與x之間的函數(shù)關(guān)系式;②若種植的總成本為5600元,從植樹工人中隨機(jī)采訪一名工人,求采訪到種植C種樹苗工人的概率.20.(8分)如圖,已知拋物線(>0)與軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左邊),與軸交于點(diǎn)C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點(diǎn)P在拋物線上,點(diǎn)Q在拋物線的對稱軸上,若以BC為邊,以點(diǎn)B,C,P,Q為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)的坐標(biāo);(3)如圖2,過點(diǎn)A作直線BC的平行線交拋物線于另一點(diǎn)D,交軸交于點(diǎn)E,若AE:ED=1:4,求的值.21.(8分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點(diǎn)B,過點(diǎn)D作DC⊥OA于點(diǎn)C,DC與AB相交于點(diǎn)E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大?。?2.(10分)(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:成績分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計(jì)■1(1)寫出a,b,c的值;(2)請估計(jì)這1000名學(xué)生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.23.(12分)一個不透明的袋子中,裝有標(biāo)號分別為1、-1、2的三個小球,他們除標(biāo)號不同外,其余都完全相同;攪勻后,從中任意取一個球,標(biāo)號為正數(shù)的概率是;攪勻后,從中任取一個球,標(biāo)號記為k,然后放回?cái)噭蛟偃∫粋€球,標(biāo)號記為b,求直線y=kx+b經(jīng)過一、二、三象限的概率.24.閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.試說明的最小值為1.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:底面積是:9πcm1,底面周長是6πcm,則側(cè)面積是:×6π×5=15πcm1.則這個圓錐的全面積為:9π+15π=14πcm1.故選B.考點(diǎn):圓錐的計(jì)算.2、C【解析】

從數(shù)軸上可以看出a、b都是負(fù)數(shù),且a<b,由此逐項(xiàng)分析得出結(jié)論即可.【詳解】由數(shù)軸可知:a<b<0,A、兩數(shù)相乘,同號得正,ab>0是正確的;

B、同號相加,取相同的符號,a+b<0是正確的;

C、a<b<0,,故選項(xiàng)是錯誤的;

D、a-b=a+(-b)取a的符號,a-b<0是正確的.

故選:C.【點(diǎn)睛】此題考查有理數(shù)的混合運(yùn)算,數(shù)軸,解題關(guān)鍵在于結(jié)合數(shù)軸進(jìn)行解答.3、D【解析】

過P,Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,由全等三角形對應(yīng)邊相等及反比例函數(shù)k的幾何意義確定出所求即可.【詳解】過P,Q分別作PM⊥x軸,QN⊥x軸,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋轉(zhuǎn)可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,設(shè)P(a,b),則有Q(-b,a),由點(diǎn)P在y=上,得到ab=3,可得-ab=-3,則點(diǎn)Q在y=-上.故選D.【點(diǎn)睛】此題考查了待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,以及坐標(biāo)與圖形變化,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.4、C【解析】

根據(jù)題意可以求得點(diǎn)O'的坐標(biāo),從而可以求得k的值.【詳解】∵點(diǎn)B的坐標(biāo)為(0,4),

∴OB=4,

作O′C⊥OB于點(diǎn)C,

∵△ABO繞點(diǎn)B逆時針旋轉(zhuǎn)60°后得到△A'BO',

∴O′B=OB=4,

∴O′C=4×sin60°=2,BC=4×cos60°=2,

∴OC=2,

∴點(diǎn)O′的坐標(biāo)為:(2,2),

∵函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)O',

∴2=,得k=4,

故選C.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、坐標(biāo)與圖形的變化,解題的關(guān)鍵是利用數(shù)形結(jié)合的思想和反比例函數(shù)的性質(zhì)解答.5、D【解析】

根據(jù)積的乘方與冪的乘方計(jì)算可得.【詳解】解:(﹣ab2)3=﹣a3b6,故選D.【點(diǎn)睛】本題主要考查冪的乘方與積的乘方,解題的關(guān)鍵是掌握積的乘方與冪的乘方的運(yùn)算法則.6、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數(shù)軸上表示為:,故選B.7、B【解析】

由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點(diǎn),∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點(diǎn)E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點(diǎn)睛】本題考查了矩形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,特殊角的正切值的運(yùn)用,勾股定理的運(yùn)用及直角三角形的性質(zhì)的運(yùn)用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.8、B【解析】試題分析:根據(jù)樣本A,B中數(shù)據(jù)之間的關(guān)系,結(jié)合眾數(shù),平均數(shù),中位數(shù)和標(biāo)準(zhǔn)差的定義即可得到結(jié)論:設(shè)樣本A中的數(shù)據(jù)為xi,則樣本B中的數(shù)據(jù)為yi=xi+2,則樣本數(shù)據(jù)B中的眾數(shù)和平均數(shù)以及中位數(shù)和A中的眾數(shù),平均數(shù),中位數(shù)相差2,只有標(biāo)準(zhǔn)差沒有發(fā)生變化.故選B.考點(diǎn):統(tǒng)計(jì)量的選擇.9、B【解析】主視圖是從正面看得到的視圖,從正面看上面圓錐看見的是:三角形,下面兩個正方體看見的是兩個正方形.故選B.10、C【解析】

根據(jù)扇形的面積公式列方程即可得到結(jié)論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設(shè)扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點(diǎn)睛】本題考了扇形面積的計(jì)算的應(yīng)用,解題的關(guān)鍵是熟練掌握扇形面積計(jì)算公式:扇形的面積=.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對應(yīng)邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據(jù)題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1【點(diǎn)睛】此題考查了相似三角形的判定與性質(zhì),三角函數(shù)的定義.此題難度適中,解題的關(guān)鍵是準(zhǔn)確作出輔助線,注意轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用.12、.【解析】

根據(jù)判別式的意義得到,然后解不等式即可.【詳解】解:關(guān)于的一元二次方程有兩個不相等的實(shí)數(shù)根,,解得:,故答案為:.【點(diǎn)睛】此題考查了一元二次方程的根的判別式:當(dāng),方程有兩個不相等的實(shí)數(shù)根;當(dāng),方程有兩個相等的實(shí)數(shù)根;當(dāng),方程沒有實(shí)數(shù)根.13、.【解析】試題分析:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(diǎn)(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(diǎn)(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;列表法與樹狀圖法.14、12連接DE與BC與交于點(diǎn)Q,連接DF與BC交于點(diǎn)M,連接GH與格線交于點(diǎn)N,連接MN與AB交于P.【解析】

(1)利用勾股定理求出AB,從而得到△ABC的周長;(2)取格點(diǎn)D,E,F(xiàn),G,H,連接DE與BC交于點(diǎn)Q;連接DF與BC交于點(diǎn)M;連接GH與格線交于點(diǎn)N;連接MN與AB交于點(diǎn)P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據(jù)勾股定理得AB=5,∴△ABC的周長=5+4+3=12.(2)取格點(diǎn)D,E,F(xiàn),G,H,連接DE與BC交于點(diǎn)Q;連接DF與BC交于點(diǎn)M;連接GH與格線交于點(diǎn)N;連接MN與AB交于點(diǎn)P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點(diǎn)Q,連接DF與BC交于點(diǎn)M,連接GH與格線交于點(diǎn)N,連接MN與AB交于P.【點(diǎn)睛】本題涉及的知識點(diǎn)有:勾股定理,三角形中位線定理,軸對稱之線路最短問題.15、x≥1.【解析】試題分析:根據(jù)題意得當(dāng)x≥1時,ax+b≥2,即不等式ax+b≥2的解集為x≥1.故答案為x≥1.考點(diǎn):一次函數(shù)與一元一次不等式.16、18【解析】

運(yùn)用冪的乘方和積的乘方的運(yùn)算法則求解即可.【詳解】解:∵am=2,an=3,∴a3m+2n=(am)3×(an)2=23×32=1.故答案為1.【點(diǎn)睛】本題考查了冪的乘方和積的乘方,掌握運(yùn)算法則是解答本題的關(guān)鍵.三、解答題(共8題,共72分)17、12【解析】

這道求代數(shù)式值的題目,不應(yīng)考慮把x的值直接代入,通常做法是先化簡,然后再代入求值.【詳解】解:原式=?﹣=﹣=﹣=,當(dāng)x=1時,原式==.【點(diǎn)睛】本題考查了分式的化簡求值,解題的關(guān)鍵是熟練的掌握分式的運(yùn)算法則.18、不需要改道行駛【解析】

解:過點(diǎn)A作AH⊥CF交CF于點(diǎn)H,由圖可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防車不需要改道行駛.過點(diǎn)A作AH⊥CF交CF于點(diǎn)H,應(yīng)用三角函數(shù)求出AH的長,大于100米,不需要改道行駛,不大于100米,需要改道行駛.19、(1);(2)①;②【解析】

(1)先求出種植C種樹苗的人數(shù),根據(jù)現(xiàn)種植A、B、C三種樹苗一共480棵,可以列出等量關(guān)系,解出y與x之間的關(guān)系;(2)①分別求出種植A,B,C三種樹苗的成本,然后相加即可;②求出種植C種樹苗工人的人數(shù),然后用種植C種樹苗工人的人數(shù)÷總?cè)藬?shù)即可求出概率.【詳解】解:(1)設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名,則種植C種樹苗的人數(shù)為(80-x-y)人,根據(jù)題意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②種植的總成本為5600元時,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即種植A種樹苗的工人為10名,種植B種樹苗的工人為50名,種植B種樹苗的工人為:80-10-50=20名.采訪到種植C種樹苗工人的概率為:=.【點(diǎn)睛】本題主要考查了一次函數(shù)的實(shí)際問題,以及概率的求法,能夠?qū)?shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型是解答此題的關(guān)鍵.20、(1);(2)點(diǎn)P的坐標(biāo)為;(3).【解析】

(1)利用三角形相似可求AO?OB,再由一元二次方程根與系數(shù)關(guān)系求AO?OB構(gòu)造方程求n;(2)求出B、C坐標(biāo),設(shè)出點(diǎn)Q坐標(biāo),利用平行四邊形對角線互相平分性質(zhì),分類討論點(diǎn)P坐標(biāo),分別代入拋物線解析式,求出Q點(diǎn)坐標(biāo);(3)設(shè)出點(diǎn)D坐標(biāo)(a,b),利用相似表示OA,再由一元二次方程根與系數(shù)關(guān)系表示OB,得到點(diǎn)B坐標(biāo),進(jìn)而找到b與a關(guān)系,代入拋物線求a、n即可.【詳解】(1)若△ABC為直角三角形∴△AOC∽△COB∴OC2=AO?OB當(dāng)y=0時,0=x2-x-n由一元二次方程根與系數(shù)關(guān)系-OA?OB=OC2n2==?2n解得n=0(舍去)或n=2∴拋物線解析式為y=;(2)由(1)當(dāng)=0時解得x1=-1,x2=4∴OA=1,OB=4∴B(4,0),C(0,-2)∵拋物線對稱軸為直線x=-=?∴設(shè)點(diǎn)Q坐標(biāo)為(,b)由平行四邊形性質(zhì)可知當(dāng)BQ、CP為平行四邊形對角線時,點(diǎn)P坐標(biāo)為(,b+2)代入y=x2-x-2解得b=,則P點(diǎn)坐標(biāo)為(,)當(dāng)CQ、PB為為平行四邊形對角線時,點(diǎn)P坐標(biāo)為(-,b-2)代入y=x2-x-2解得b=,則P坐標(biāo)為(-,)綜上點(diǎn)P坐標(biāo)為(,),(-,);(3)設(shè)點(diǎn)D坐標(biāo)為(a,b)∵AE:ED=1:4則OE=b,OA=a∵AD∥AB∴△AEO∽△BCO∵OC=n∴∴OB=由一元二次方程根與系數(shù)關(guān)系得,∴b=a2將點(diǎn)A(-a,0),D(a,a2)代入y=x2-x-n解得a=6或a=0(舍去)則n=.【點(diǎn)睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運(yùn)用數(shù)形結(jié)合分類討論思想.21、(1)證明見解析;(2)110°.【解析】分析:(1)欲證明DB=DE,只要證明∠BED=∠ABD即可;(2)因?yàn)椤鱋AB是等腰三角形,屬于只要求出∠OBA即可解決問題;詳解:(1)證明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD為切線,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD為切線,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.點(diǎn)睛:本題考查圓周角定理、切線的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考常考題型.22、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】

(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計(jì)算出樣本總?cè)藬?shù),再分別計(jì)算出a,b,c的值;(2)先計(jì)算出競賽分?jǐn)?shù)不低于70分的頻率,根據(jù)樣本估計(jì)總體的思想,計(jì)算出1000名學(xué)生中競賽成績不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學(xué)來自一組的情況,利用求概率公式計(jì)算出概率.【詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=25(名)b=50﹣8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論