版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆浙江省寧波興寧中學中考數(shù)學考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.2.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根3.下列各數(shù)是不等式組的解是()A.0 B. C.2 D.34.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(
)A.15
B.12
C.9
D.65.剪紙是我國傳統(tǒng)的民間藝術,下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.6.用鋁片做聽裝飲料瓶,現(xiàn)有100張鋁片,每張鋁片可制瓶身16個或制瓶底45個,一個瓶身和兩個瓶底可配成一套,設用張鋁片制作瓶身,則可列方程()A. B.C. D.7.計算-3-1的結果是()A.2B.-2C.4D.-48.今年,我省啟動了“關愛留守兒童工程”.某村小為了了解各年級留守兒童的數(shù)量,對一到六年級留守兒童數(shù)量進行了統(tǒng)計,得到每個年級的留守兒童人數(shù)分別為10,15,10,17,18,1.對于這組數(shù)據(jù),下列說法錯誤的是()A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是9.若一個多邊形的內角和為360°,則這個多邊形的邊數(shù)是(
)A.3
B.4
C.5
D.610.下面運算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|11.利用運算律簡便計算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–199812.已知函數(shù)y=的圖象如圖,當x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.用一張扇形紙片圍成一個圓錐的側面(接縫處不計),若這個扇形紙片的面積是90πcm2,圍成的圓錐的底面半徑為15cm,則這個圓錐的母線長為_____cm.14.拋物線y=x2﹣2x+m與x軸只有一個交點,則m的值為_____.15.拋物線y=mx2+2mx+5的對稱軸是直線_____.16.在一個不透明的盒子中裝有8個白球,若干個黃球,它們除顏色不同外,其余均相同.若從中隨機摸出一個球,它是白球的概率為,則黃球的個數(shù)為______.17.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.18.按照一定規(guī)律排列依次為,…..按此規(guī)律,這列數(shù)中的第100個數(shù)是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:甲登山上升的速度是每分鐘米,乙在A地時距地面的高度b為米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式.登山多長時間時,甲、乙兩人距地面的高度差為50米?20.(6分)(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點M,探究AE與BF的數(shù)量關系,并證明你的結論;(3)在(2)的基礎上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數(shù)量關系;.21.(6分)如圖,在平面直角坐標系中,直線y1=2x+b與坐標軸交于A、B兩點,與雙曲線(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,點B的坐標為(0,﹣2).(1)求直線y1=2x+b及雙曲線(x>0)的表達式;(2)當x>0時,直接寫出不等式的解集;(3)直線x=3交直線y1=2x+b于點E,交雙曲線(x>0)于點F,求△CEF的面積.22.(8分)為了鞏固全國文明城市建設成果,突出城市品質的提升,近年來,某市積極落實節(jié)能減排政策,推行綠色建筑,據(jù)統(tǒng)計,該市2014年的綠色建筑面積約為950萬平方米,2016年達到了1862萬平方米.若2015年、2016年的綠色建筑面積按相同的增長率逐年遞增,請解答下列問題:求這兩年該市推行綠色建筑面積的年平均增長率;2017年該市計劃推行綠色建筑面積達到2400萬平方米.如果2017年仍保持相同的年平均增長率,請你預測2017年該市能否完成計劃目標.23.(8分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.求小明選擇去白鹿原游玩的概率;用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.24.(10分)文藝復興時期,意大利藝術大師達.芬奇研究過用圓弧圍成的部分圖形的面積問題.已知正方形的邊長是2,就能求出圖中陰影部分的面積.證明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S陰影=S1+S6=S1+S2+S3=.25.(10分)如圖,在Rt△ABC中,∠C=90°,AB的垂直平分線交AC于點D,交AB于點E.(1)求證:△ADE~△ABC;(2)當AC=8,BC=6時,求DE的長.26.(12分)解分式方程:27.(12分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當點E在邊BC上時,求證DE=EB;如圖2,當點E在△ABC內部時,猜想ED和EB數(shù)量關系,并加以證明;如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質;3.矩形的性質.2、B【解析】一元二次方程的根的情況與根的判別式有關,,方程有兩個不相等的實數(shù)根,故選B3、D【解析】
求出不等式組的解集,判斷即可.【詳解】,由①得:x>-1,由②得:x>2,則不等式組的解集為x>2,即3是不等式組的解,故選D.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關鍵.4、A【解析】
根據(jù)三角函數(shù)的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A5、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【點睛】本題主要考查軸對稱圖形和中心對稱圖形,在平面內,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內,如果把一個圖形繞某個點旋轉180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.6、C【解析】
設用張鋁片制作瓶身,則用張鋁片制作瓶底,可作瓶身16x個,瓶底個,再根據(jù)一個瓶身和兩個瓶底可配成一套,即可列出方程.【詳解】設用張鋁片制作瓶身,則用張鋁片制作瓶底,依題意可列方程故選C.【點睛】此題主要考查一元一次方程的應用,解題的關鍵是根據(jù)題意找到等量關系.7、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.8、C【解析】
解:中位數(shù)應該是15和17的平均數(shù)16,故C選項錯誤,其他選擇正確.故選C.【點睛】本題考查求中位數(shù),眾數(shù),方差,理解相關概念是本題的解題關鍵.9、B【解析】
利用多邊形的內角和公式求出n即可.【詳解】由題意得:(n-2)×180°=360°,解得n=4;故答案為:B.【點睛】本題考查多邊形的內角和,解題關鍵在于熟練掌握公式.10、D【解析】
分別利用整數(shù)指數(shù)冪的性質以及合并同類項以及積的乘方運算、絕對值的性質分別化簡求出答案.【詳解】解:A,,故此選項錯誤;B,,故此選項錯誤;C,,故此選項錯誤;D,,故此選項正確.所以D選項是正確的.【點睛】靈活運用整數(shù)指數(shù)冪的性質以及合并同類項以及積的乘方運算、絕對值的性質可以求出答案.11、B【解析】
根據(jù)乘法分配律和有理數(shù)的混合運算法則可以解答本題.【詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【點睛】本題考查了有理數(shù)的混合運算,解答本題的關鍵是明確有理數(shù)混合運算的計算方法.12、C【解析】試題分析:根據(jù)反比例函數(shù)的性質,再結合函數(shù)的圖象即可解答本題.解:根據(jù)反比例函數(shù)的性質和圖象顯示可知:此函數(shù)為減函數(shù),x≥-1時,在第三象限內y的取值范圍是y≤-1;在第一象限內y的取值范圍是y>1.故選C.考點:本題考查了反比例函數(shù)的性質點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數(shù)的基本性質和知識,反比例函數(shù)y=的圖象是雙曲線,當k>1時,圖象在一、三象限,在每個象限內y隨x的增大而減小;當k<1時,圖象在二、四象限,在每個象限內,y隨x的增大而增大二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
設這個圓錐的母線長為xcm,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到?2π?15?x=90π,然后解方程即可.【詳解】解:設這個圓錐的母線長為xcm,根據(jù)題意得?2π?15?x=90π,解得x=1,即這個圓錐的母線長為1cm.故答案為1.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.14、1【解析】
由拋物線y=x2-2x+m與x軸只有一個交點可知,對應的一元二次方程x2-2x+m=2,根的判別式△=b2-4ac=2,由此即可得到關于m的方程,解方程即可求得m的值.【詳解】解:∵拋物線y=x2﹣2x+m與x軸只有一個交點,∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案為1.【點睛】本題考查了拋物線與x軸的交點問題,注:①拋物線與x軸有兩個交點,則△>2;②拋物線與x軸無交點,則△<2;③拋物線與x軸有一個交點,則△=2.15、x=﹣1【解析】
根據(jù)拋物線的對稱軸公式可直接得出.【詳解】解:這里a=m,b=2m∴對稱軸x=故答案為:x=-1.【點睛】解答本題關鍵是識記拋物線的對稱軸公式x=.16、1【解析】首先設黃球的個數(shù)為x個,然后根據(jù)概率公式列方程即可求得答案.解:設黃球的個數(shù)為x個,根據(jù)題意得:=2/3解得:x=1.∴黃球的個數(shù)為1.17、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.18、【解析】
根據(jù)按一定規(guī)律排列的一列數(shù)依次為…,可得第n個數(shù)為,據(jù)此可得第100個數(shù).【詳解】由題意,數(shù)列可改寫成,…,則后一個數(shù)的分子比前一個數(shù)的法則大2,后一個數(shù)的分母比前一個數(shù)的分母大3,∴第n個數(shù)為=,∴這列數(shù)中的第100個數(shù)為=;故答案為:.【點睛】本題考查數(shù)字類規(guī)律,解題的關鍵是讀懂題意,掌握數(shù)字類規(guī)律基本解題方法.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)10,30;(2)y=;(3)登山4分鐘、9分鐘或15分鐘時,甲、乙兩人距地面的高度差為50米.【解析】
(1)根據(jù)速度=高度÷時間即可算出甲登山上升的速度;根據(jù)高度=速度×時間即可算出乙在A地時距地面的高度b的值;(2)分0≤x≤2和x≥2兩種情況,根據(jù)高度=初始高度+速度×時間即可得出y關于x的函數(shù)關系;(3)當乙未到終點時,找出甲登山全程中y關于x的函數(shù)關系式,令二者做差等于50即可得出關于x的一元一次方程,解之即可求出x值;當乙到達終點時,用終點的高度﹣甲登山全程中y關于x的函數(shù)關系式=50,即可得出關于x的一元一次方程,解之可求出x值.綜上即可得出結論.【詳解】(1)(300﹣100)÷20=10(米/分鐘),b=15÷1×2=30,故答案為10,30;(2)當0≤x≤2時,y=15x;當x≥2時,y=30+10×3(x﹣2)=30x﹣30,當y=30x﹣30=300時,x=11,∴乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式為y=;(3)甲登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式為y=10x+100(0≤x≤20).當10x+100﹣(30x﹣30)=50時,解得:x=4,當30x﹣30﹣(10x+100)=50時,解得:x=9,當300﹣(10x+100)=50時,解得:x=15,答:登山4分鐘、9分鐘或15分鐘時,甲、乙兩人距地面的高度差為50米.【點睛】本題考查了一次函數(shù)的應用以及解一元一次方程,解題的關鍵是:(1)根據(jù)數(shù)量關系列式計算;(2)根據(jù)高度=初始高度+速度×時間找出y關于x的函數(shù)關系式;(3)將兩函數(shù)關系式做差找出關于x的一元一次方程.20、(1)證明見解析;(2)AE=23BF,(3)AE=m【解析】
(1)根據(jù)正方形的性質,可得∠ABC與∠C的關系,AB與BC的關系,根據(jù)兩直線垂直,可得∠AMB的度數(shù),根據(jù)直角三角形銳角的關系,可得∠ABM與∠BAM的關系,根據(jù)同角的余角相等,可得∠BAM與∠CBF的關系,根據(jù)ASA,可得△ABE≌△BCF,根據(jù)全等三角形的性質,可得答案;(2)根據(jù)矩形的性質得到∠ABC=∠C,由余角的性質得到∠BAM=∠CBF,根據(jù)相似三角形的性質即可得到結論;(3)結論:AE=mn【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如圖2中,結論:AE=23理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)結論:AE=mn理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn【點睛】本題考查了四邊形綜合題、相似三角形的判定和性質,全等三角形的判定和性質,正方形的性質,矩形的性質,熟練掌握全等三角形或相似三角形的判定和性質是解題的關鍵.21、(1)直線解析式為y1=2x﹣2,雙曲線的表達式為y2=(x>0);(2)0<x<2;(3)【解析】
(1)將點B的代入直線y1=2x+b,可得b,則可以求得直線解析式;令y=0可得A點坐標為(1,0),又因為OA=AD,則D點坐標為(2,0),把x=2代入直線解析式,可得y=2,從而得到點C的坐標為(2,2),在把(2,2)代入雙曲線y2=,可得k=4,則雙曲線的表達式為y2=(x>0).(2)由x的取值范圍,結合圖像可求得答案.(3)把x=3代入y2函數(shù),可得y=;把x=3代入y1函數(shù),可得y=4,從而得到EF,由三角形的面積公式可得S△CEF=.【詳解】解:(1)將點B的坐標(0,﹣2)代入直線y1=2x+b,可得﹣2=b,∴直線解析式為y1=2x﹣2,令y=0,則x=1,∴A(1,0),∵OA=AD,∴D(2,0),把x=2代入y1=2x﹣2,可得y=2,∴點C的坐標為(2,2),把(2,2)代入雙曲線y2=,可得k=2×2=4,∴雙曲線的表達式為y2=(x>0);(2)當x>0時,不等式>2x+b的解集為0<x<2;(3)把x=3代入y2=,可得y=;把x=3代入y1=2x﹣2,可得y=4,∴EF=4﹣=,∴S△CEF=××(3﹣2)=,∴△CEF的面積為.【點睛】本題考察了一次函數(shù)和雙曲線例函數(shù)的綜合;熟練掌握由點求解析式是解題的關鍵;能夠結合圖形及三角形面積公式是解題的關鍵.22、(1)這兩年該市推行綠色建筑面積的年平均增長率為40%;(2)如果2017年仍保持相同的年平均增長率,2017年該市能完成計劃目標.【解析】試題分析:(1)設這兩年該市推行綠色建筑面積的年平均增長率x,根據(jù)2014年的綠色建筑面積約為700萬平方米和2016年達到了1183萬平方米,列出方程求解即可;(2)根據(jù)(1)求出的增長率問題,先求出預測2017年綠色建筑面積,再與計劃推行綠色建筑面積達到1500萬平方米進行比較,即可得出答案.試題解析:(1)設這兩年該市推行綠色建筑面積的年平均增長率為x,根據(jù)題意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=﹣2.3(舍去),答:這兩年該市推行綠色建筑面積的年平均增長率為30%;(2)根據(jù)題意得:1183×(1+30%)=1537.9(萬平方米),∵1537.9>1500,∴2017年該市能完成計劃目標.【點睛】本題考查了一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件和增長率問題的數(shù)量關系,列出方程進行求解.23、(1);(2)【解析】
(1)利用概率公式直接計算即可;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率.24、S1,S3,S4,S5,1【解析】
利用圖形的拼割,正方形的性質,尋找等面積的圖形,即可解決問題.【詳解】由題意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S陰影面積=S1+S6=S1+S1+S3=1.故答案為S1,S3,S4,S5,1.【點睛】考查正方形的性質、矩形的性質、扇形的面積等知識,解題的關鍵是靈活運用所學知識解決問題.25、(1)見解析;(2).【解析】
(1)根據(jù)兩角對應相等,兩三角形相似即可判定;(2)利用相似三角形的性質即可解決問題.【詳解】(1)∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB.(2)在Rt△ABC中,∵AC=8,BC=6,∴AB1.∵DE垂直平分AB,∴AE=EB=2.∵△AED
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年北海職業(yè)學院單招綜合素質筆試備考題庫含詳細答案解析
- 2026年安徽林業(yè)職業(yè)技術學院單招職業(yè)技能考試模擬試題含詳細答案解析
- 2026年江西科技職業(yè)學院單招職業(yè)技能考試參考題庫含詳細答案解析
- 2026年內蒙古能源職業(yè)學院單招職業(yè)技能考試備考試題含詳細答案解析
- 2026首都經(jīng)濟貿易大學招聘103人參考考試題庫及答案解析
- 2026年貴州電子信息職業(yè)技術學院單招職業(yè)技能考試模擬試題含詳細答案解析
- 2026年河南交通職業(yè)技術學院單招職業(yè)技能考試備考題庫含詳細答案解析
- 2026年溫州科技職業(yè)學院高職單招職業(yè)適應性測試備考題庫及答案詳細解析
- 2026年安徽糧食工程職業(yè)學院單招綜合素質考試模擬試題含詳細答案解析
- 2026年陜西能源職業(yè)技術學院單招綜合素質考試參考題庫含詳細答案解析
- 泰康入職測評題庫及答案
- 天津市河東區(qū)2026屆高一上數(shù)學期末考試試題含解析
- DB37-T6005-2026人為水土流失風險分級評價技術規(guī)范
- 彈性工作制度規(guī)范
- 仁愛科普版(2024)八年級上冊英語Unit1~Unit6補全對話練習題(含答案)
- 腎寶膠囊產品課件
- 2026河南安陽市兵役登記參考考試試題及答案解析
- Unit 1 Time to Relax Section B(1a-2c)教學課件 人教新教材2024版八年級英語下冊
- 買車背戶協(xié)議書
- 護理投訴糾紛防范及處理
- 2025年印刷及包裝行業(yè)智能化改造項目可行性研究報告
評論
0/150
提交評論