2022年河北省唐山市龍華中學中考押題數(shù)學預測卷含解析_第1頁
2022年河北省唐山市龍華中學中考押題數(shù)學預測卷含解析_第2頁
2022年河北省唐山市龍華中學中考押題數(shù)學預測卷含解析_第3頁
2022年河北省唐山市龍華中學中考押題數(shù)學預測卷含解析_第4頁
2022年河北省唐山市龍華中學中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年河北省唐山市龍華中學中考押題數(shù)學預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是我國南海地區(qū)圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區(qū)圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山2.如圖所示,在折紙活動中,小明制作了一張△ABC紙片,點D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.70° B.110° C.130° D.140°3.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數(shù)關系.則下列說法正確的是()A.兩車同時到達乙地B.轎車在行駛過程中進行了提速C.貨車出發(fā)3小時后,轎車追上貨車D.兩車在前80千米的速度相等4.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1255.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當我的年齡是你現(xiàn)在年齡的時候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.6.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣7.方程的解是A.3 B.2 C.1 D.08.一組數(shù)據(jù):1、2、2、3,若添加一個數(shù)據(jù)2,則發(fā)生變化的統(tǒng)計量是A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差9.我國古代數(shù)學著作《增刪算法統(tǒng)宗》記載”繩索量竿”問題:“一條竿子一條索,索比竿子長一托.折回索子卻量竿,卻比竿子短一托“其大意為:現(xiàn)有一根竿和一條繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.設繩索長x尺,竿長y尺,則符合題意的方程組是()A. B. C. D.10.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解:a3﹣2a2b+ab2=_____.12.在一個不透明的布袋中裝有4個白球和n個黃球,它們除顏色不同外,其余均相同,若從中隨機摸出一個球,摸到白球的概率是,則n=_____.13.二次函數(shù)y=x2-2x+1的對稱軸方程是x=_______.14.如圖,在平面直角坐標系xOy中,點A的坐標為A(1,0),等腰直角三角形ABC的邊AB在x軸的正半軸上,∠ABC=90°,點B在點A的右側,點C在第一象限。將△ABC繞點A逆時針旋轉75°,如果點C的對應點E恰好落在y軸的正半軸上,那么邊AB的長為____.15.若方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),則m=______16.化簡的結果是_______________.三、解答題(共8題,共72分)17.(8分)如圖,在矩形ABCD中,AB═2,AD=,P是BC邊上的一點,且BP=2CP.(1)用尺規(guī)在圖①中作出CD邊上的中點E,連接AE、BE(保留作圖痕跡,不寫作法);(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說明理由;(3)如圖③,在(2)的條件下,連接EP并廷長交AB的廷長線于點F,連接AP,不添加輔助線,△PFB能否由都經過P點的兩次變換與△PAE組成一個等腰三角形?如果能,說明理由,并寫出兩種方法(指出對稱軸、旋轉中心、旋轉方向和平移距離)18.(8分)某中學響應“陽光體育”活動的號召,準備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學根據(jù)實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學最多可以購買多少個籃球?19.(8分)綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:

設銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當x<16時,為“不稱職”,當時為“基本稱職”,當時為“稱職”,當時為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:補全折線統(tǒng)計圖和扇形統(tǒng)計圖;求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);為了調動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標準,凡月銷售額達到或超過這個標準的銷售員將獲得獎勵。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為多少萬元(結果去整數(shù))?并簡述其理由.20.(8分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.21.(8分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.22.(10分)某街道需要鋪設管線的總長為9000,計劃由甲隊施工,每天完成150.工作一段時間后,因為天氣原因,想要40天完工,所以增加了乙隊.如圖表示剩余管線的長度與甲隊工作時間(天)之間的函數(shù)關系圖象.(1)直接寫出點的坐標;(2)求線段所對應的函數(shù)解析式,并寫出自變量的取值范圍;(3)直接寫出乙隊工作25天后剩余管線的長度.23.(12分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE24.如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當AC=BC=2時,AD的長為;②當AC=3,BC=4時,AD的長為;當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關鍵是熟練的掌握兩點之間直線距離最短.2、D【解析】∵四邊形ADA'E的內角和為(4-2)?180°=360°,而由折疊可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.3、B【解析】

①根據(jù)函數(shù)的圖象即可直接得出結論;②求得直線OA和DC的解析式,求得交點坐標即可;③由圖象無法求得B的橫坐標;④分別進行運算即可得出結論.【詳解】由題意和圖可得,轎車先到達乙地,故選項A錯誤,轎車在行駛過程中進行了提速,故選項B正確,貨車的速度是:300÷5=60千米/時,轎車在BC段對應的速度是:千米/時,故選項D錯誤,設貨車對應的函數(shù)解析式為y=kx,5k=300,得k=60,即貨車對應的函數(shù)解析式為y=60x,設CD段轎車對應的函數(shù)解析式為y=ax+b,,得,即CD段轎車對應的函數(shù)解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發(fā)3.9小時后,轎車追上貨車,故選項C錯誤,故選:B.【點睛】此題考查一次函數(shù)的應用,解題的關鍵在于利用題中信息列出函數(shù)解析式4、B【解析】

根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.5、D【解析】試題解析:設現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組6、D【解析】

根據(jù)合并同類項、同底數(shù)冪的除法法則、分數(shù)指數(shù)運算法則、冪的乘方法則進行計算即可.【詳解】解:A:2a+3a=(2+3)a=5a,故A錯誤;B:x8÷x2=x8-2=x6,故B錯誤;C:=,故C錯誤;D:(-a-2)3=-a-6=-,故D正確.故選D.【點睛】本題考查了合并同類項、同底數(shù)冪的除法法則、分數(shù)指數(shù)運算法則、冪的乘方法則.其中指數(shù)為分數(shù)的情況在初中階段很少出現(xiàn).7、A【解析】試題分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經檢驗x=3是分式方程的解.故選A.8、D【解析】

解:A.原來數(shù)據(jù)的平均數(shù)是2,添加數(shù)字2后平均數(shù)仍為2,故A與要求不符;B.原來數(shù)據(jù)的中位數(shù)是2,添加數(shù)字2后中位數(shù)仍為2,故B與要求不符;C.原來數(shù)據(jù)的眾數(shù)是2,添加數(shù)字2后眾數(shù)仍為2,故C與要求不符;D.原來數(shù)據(jù)的方差==,添加數(shù)字2后的方差==,故方差發(fā)生了變化.故選D.9、A【解析】

設索長為x尺,竿子長為y尺,根據(jù)“索比竿子長一托,折回索子卻量竿,卻比竿子短一托”,即可得出關于x、y的二元一次方程組.【詳解】設索長為x尺,竿子長為y尺,根據(jù)題意得:.故選A.【點睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.10、D【解析】

根據(jù)全等三角形的性質可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【點睛】本題考查全等三角形的性質,兩三角形全等,其對應邊和對應角都相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式進行分解即可.【詳解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案為a(a﹣b)1.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.12、1【解析】

根據(jù)白球的概率公式=列出方程求解即可.【詳解】不透明的布袋中的球除顏色不同外,其余均相同,共有n+4個球,其中白球4個,根據(jù)古典型概率公式知:P(白球)==.解得:n=1,故答案為1.【點睛】此題主要考查了概率公式的應用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.13、1【解析】

利用公式法可求二次函數(shù)y=x2-2x+1的對稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為:1【點睛】本題考查二次函數(shù)基本性質中的對稱軸公式;也可用配方法解決.14、【解析】

依據(jù)旋轉的性質,即可得到,再根據(jù),,即可得出,.最后在中,可得到.【詳解】依題可知,,,,∴,在中,,,,,.∴在中,.故答案為:.【點睛】本題考查了坐標與圖形變化,等腰直角三角形的性質以及含30°角的直角三角形的綜合運用,圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.15、﹣1【解析】

根據(jù)“方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù)”,利用一元二次方程根與系數(shù)的關系,列出關于m的等式,解之,再把m的值代入原方程,找出符合題意的m的值即可.【詳解】∵方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),∴1﹣m2=0,解得:m=1或﹣1,把m=1代入原方程得:x2+2=0,該方程無解,∴m=1不合題意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合題意),∴m=﹣1,故答案為﹣1.【點睛】本題考查了根與系數(shù)的關系,正確掌握一元二次方程兩根之和,兩個之積與系數(shù)之間的關系式解題的關鍵.若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關系式:,.16、【解析】

先將分式進行通分,即可進行運算.【詳解】=-=【點睛】此題主要考查分式的加減,解題的關鍵是先將它們通分.三、解答題(共8題,共72分)17、(1)作圖見解析;(2)EB是平分∠AEC,理由見解析;(3)△PFB能由都經過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉120°和△EPA重合,①沿PF折疊,②沿AE折疊.【解析】【分析】(1)根據(jù)作線段的垂直平分線的方法作圖即可得出結論;(2)先求出DE=CE=1,進而判斷出△ADE≌△BCE,得出∠AED=∠BEC,再用銳角三角函數(shù)求出∠AED,即可得出結論;(3)先判斷出△AEP≌△FBP,即可得出結論.【詳解】(1)依題意作出圖形如圖①所示;(2)EB是平分∠AEC,理由:∵四邊形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵點E是CD的中點,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC==,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都經過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉120°和△EPA重合,①沿PF折疊,②沿AE折疊.【點睛】本題考查了矩形的性質,全等三角形的判定和性質,解直角三角形,圖形的變換等,熟練掌握和靈活應用相關的性質與定理、判斷出△AEP≌△△FBP是解本題的關鍵.18、(1)一個足球需要50元,一個籃球需要80元;(2)1個.【解析】

(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,根據(jù)購買2個足球和3個籃球共需340元,4個排球和5個籃球共需600元,可得出方程組,解出即可;【詳解】(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,由題意得:2x+3y=解得:x=50y=80答:購買一個足球需要50元,購買一個籃球需要80元;(2)設該中學購買籃球m個,由題意得:80m+50(100﹣m)≤6000,解得:m≤113∵m是整數(shù),∴m最大可取1.答:這所中學最多可以購買籃球1個.【點睛】本題考查了一元一次不等式及二元一次方程組的知識,解答本題的關鍵是仔細審題,得到等量關系及不等關系,難度一般.19、(1)補全統(tǒng)計圖如圖見解析;(2)“稱職”的銷售員月銷售額的中位數(shù)為:22萬,眾數(shù):21萬;“優(yōu)秀”的銷售員月銷售額的中位數(shù)為:26萬,眾數(shù):25萬和26萬;(3)月銷售額獎勵標準應定為22萬元.【解析】

(1)根據(jù)稱職的人數(shù)及其所占百分比求得總人數(shù),據(jù)此求得不稱職、基本稱職和優(yōu)秀的百分比,再求出優(yōu)秀的總人數(shù),從而得出銷售26萬元的人數(shù),據(jù)此即可補全圖形.(2)根據(jù)中位數(shù)和眾數(shù)的定義求解可得;(3)根據(jù)中位數(shù)的意義求得稱職和優(yōu)秀的中位數(shù)即可得出符合要求的數(shù)據(jù).【詳解】(1)依題可得:

“不稱職”人數(shù)為:2+2=4(人),

“基本稱職”人數(shù)為:2+3+3+2=10(人),

“稱職”人數(shù)為:4+5+4+3+4=20(人),

∴總人數(shù)為:20÷50%=40(人),

∴不稱職”百分比:a=4÷40=10%,

“基本稱職”百分比:b=10÷40=25%,

“優(yōu)秀”百分比:d=1-10%-25%-50%=15%,

∴“優(yōu)秀”人數(shù)為:40×15%=6(人),

∴得26分的人數(shù)為:6-2-1-1=2(人),

補全統(tǒng)計圖如圖所示:

(2)由折線統(tǒng)計圖可知:“稱職”20萬4人,21萬5人,22萬4人,23萬3人,24萬4人,

“優(yōu)秀”25萬2人,26萬2人,27萬1人,28萬1人;

“稱職”的銷售員月銷售額的中位數(shù)為:22萬,眾數(shù):21萬;

“優(yōu)秀”的銷售員月銷售額的中位數(shù)為:26萬,眾數(shù):25萬和26萬;

(3)由(2)知月銷售額獎勵標準應定為22萬.

∵“稱職”和“優(yōu)秀”的銷售員月銷售額的中位數(shù)為:22萬,

∴要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為22萬元.【點睛】考查頻數(shù)分布直方圖、扇形統(tǒng)計圖、中位數(shù)、眾數(shù)等知識,解題的關鍵是靈活運用所學知識解決問題.20、(3)a=,方程的另一根為;(2)答案見解析.【解析】

(3)把x=2代入方程,求出a的值,再把a代入原方程,進一步解方程即可;(2)分兩種情況探討:①當a=3時,為一元一次方程;②當a≠3時,利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當a=3時,方程為2x=3,解得:x=3.②當a≠3時,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當a=2時,原方程為:x2+2x+3=3,解得:x3=x2=-3;當a=3時,原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當a=3,3,2時,方程僅有一個根,分別為3,3,-3.考點:3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應用.21、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.試題解析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質;2.全等三角形的判定;3.平移的性質.22、(1)(10,7500)(2)直線BC的解析式為y=-250x+10000,自變量x的取值范圍為10≤x≤40.(3)1250米.【解析】

(1)由于前面10天由甲單獨完成,用總的長度減去已完成的長度即為剩余的長度,從而求出點B的坐標;(2)利用待定系數(shù)法求解即可;(3)已隊工作25天后,即甲隊工作了35天,故當x=35時,函數(shù)值即為所求.【詳解】(1)9000-150×10=7500.∴點B的坐標為(10,7500)(2)設直線BC的解析式為y=kx+b,依題意,得:解得:∴直線BC的解析式為y=-250x+10000,∵乙隊是10天之后加入,40天完成,∴自變量x的取值范圍為10≤x≤40.(3)依題意,當x=35時,y=-250×35+10000=1250.∴乙隊工作25天后剩余管線的長度是1250米.【點睛】本題考查了一次函數(shù)的應用,理解題意觀察圖象得到有用信息是解題的關鍵.23、證明見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論