湖北省華中師大附中2025屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第1頁
湖北省華中師大附中2025屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第2頁
湖北省華中師大附中2025屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第3頁
湖北省華中師大附中2025屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第4頁
湖北省華中師大附中2025屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省華中師大附中2025屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數(shù)滿足,那么的最小值為(

)A. B. C. D.2.我國魏晉時期的數(shù)學家劉徽,創(chuàng)立了用圓內(nèi)接正多邊形面積無限逼近圓面積的方法,稱為“割圓術(shù)”,為圓周率的研究提供了科學的方法.在半徑為1的圓內(nèi)任取一點,則該點取自圓內(nèi)接正十二邊形外的概率為A. B.C. D.3.直線的傾斜角是()A. B. C. D.4.已知數(shù)列的前4項依次為,1,,,則該數(shù)列的一個通項公式可以是()A. B.C. D.5.已知,,,是球球面上的四個點,平面,,,則該球的表面積為()A. B. C. D.6.已知,,從射出的光線經(jīng)過直線反射后再射到直線上,最后經(jīng)直線反射后又回到點,則光線所經(jīng)過的路程可以用對稱性轉(zhuǎn)化為一條線段,這條線段的長為()A. B.3 C. D.7.已知三棱錐的所有頂點都在球的求面上,是邊長為的正三角形,為球的直徑,且,則此棱錐的體積為()A. B. C. D.8.己知弧長的弧所對的圓心角為弧度,則這條弧所在的圓的半徑為()A. B. C. D.9.已知,,當時,不等式恒成立,則的取值范圍是A. B. C. D.10.設(shè),,則下列不等式成立的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,其中是第二象限角,則____.12.設(shè)a>0,b>0,若是與3b的等比中項,則的最小值是__.13.將邊長為1的正方形ABCD沿對角線AC折起,使平面ACD⊥平面ABC,則折起后B,D兩點的距離為________.14.如圖,在內(nèi)有一系列的正方形,它們的邊長依次為,若,,則所有正方形的面積的和為___________.15.已知cosθ,θ∈(π,2π),則sinθ=_____,tan_____.16.若在區(qū)間(且)上至少含有30個零點,則的最小值為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角的對邊分別為,且.(1)求角;(2)若,,求的值.18.某校從高一(1)班和(2)班的某次數(shù)學考試的成績中各隨機抽取了6份數(shù)學成績組成一個樣本,如莖葉圖所示(試卷滿分為100分)。(1)班(2)班7688672352859293(1)試計算這12份成績的中位數(shù);(2)用各班的樣本方差比較兩個班的數(shù)學學習水平,哪個班更穩(wěn)定一些?19.在中,角所對的邊是,若向量與共線.(1)求角的大??;(2)若,求周長的取值范圍.20.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)區(qū)間.21.如圖所示,是正三角形,線段和都垂直于平面,設(shè),,且為的中點.(1)求證:平面;(2)求平面與平面所成的較小二面角的大小

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

表示直線上的點到原點的距離,利用點到直線的距離公式求得最小值.【詳解】依題意可知表示直線上的點到原點的距離,故原點到直線的距離為最小值,即最小值為,故選A.【點睛】本小題主要考查點到直線的距離公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于基礎(chǔ)題.2、D【解析】

由半徑為1的圓內(nèi)接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,求得十二邊形的面積,利用面積比的幾何概型,即可求解.【詳解】由題意,半徑為1的圓內(nèi)接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,所以該正十二邊形的面積為,由幾何概型的概率計算公式,可得所求概率,故選D.【點睛】本題主要考查了幾何概型的概率的計算問題,解決此類問題的步驟:求出滿足條件A的基本事件對應(yīng)的“幾何度量”,再求出總的基本事件對應(yīng)的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力.3、D【解析】

先求出直線的斜率,再求直線的傾斜角.【詳解】由題得直線的斜率.故選:D【點睛】本題主要考查直線的斜率和傾斜角的計算,意在考查學生對該知識的理解掌握水平和分析推理能力.4、A【解析】

根據(jù)各選擇項求出數(shù)列的首項,第二項,用排除法確定.【詳解】可用排除法,由數(shù)列項的正負可排除B,D,再看項的絕對值,在C中不合題意,排除C,只有A.可選.故選:A.【點睛】本題考查數(shù)列的通項公式,已知數(shù)列的前幾項,選擇一個通項公式,比較方便,可以利用通項公式求出數(shù)列的前幾項,把不合的排除即得.5、B【解析】

根據(jù)截面法,作出球心O與外接圓圓心所在截面,利用平行四邊形和勾股定理可求得球半徑,從而得到結(jié)果.【詳解】如圖,的外接圓圓心E為BC的中點,設(shè)球心為O,連接OE,OP,OA,D為PA的中點,連接OD.根據(jù)直角三角形的性質(zhì)可得,且平面,則//,由為等腰三角形可得,又,所以//,則四邊形ODAE是矩形,所以=,而,中,根據(jù)勾股定理可得,所以該球的表面積為.所以本題答案為B.【點睛】本題考查求三棱錐外接球的表面積問題,幾何體的外接球、內(nèi)切球問題,關(guān)鍵是球心位置的確定,必要時需把球的半徑放置在可解的幾何圖形中,如果球心的位置不易確定,則可以把該幾何體補成規(guī)則的幾何體,便于球心位置和球的半徑的確定.6、A【解析】

根據(jù)題意,畫出示意圖,求出點的坐標,進而利用兩點之間距離公式求解.【詳解】根據(jù)題意,作圖如下:已知直線AB的方程為:,則:點P關(guān)于直線AB的對稱點為,則:,解得點,同理可得點P關(guān)于直線OB的對稱點為:故光線的路程為.故選:A.【點睛】本題考查點關(guān)于直線的對稱點的求解、斜率的求解、以及兩點之間的距離,屬基礎(chǔ)題.7、A【解析】

根據(jù)題意作出圖形:設(shè)球心為O,過ABC三點的小圓的圓心為O1,則OO1⊥平面ABC,延長CO1交球于點D,則SD⊥平面ABC.∵CO1=,∴,∴高SD=2OO1=,∵△ABC是邊長為1的正三角形,∴S△ABC=,∴.考點:棱錐與外接球,體積.【名師點睛】本題考查棱錐與外接球問題,首先我們要熟記一些特殊的幾何體與外接球(內(nèi)切球)的關(guān)系,如正方體(長方體)的外接球(內(nèi)切球)球心是對角線的交點,正棱錐的外接球(內(nèi)切球)球心在棱錐的高上,對一般棱錐來講,外接球球心到名頂點距離相等,當問題難以考慮時,可減少點的個數(shù),如先考慮到三個頂點的距離相等的點是三角形的外心,球心一定在過此點與此平面垂直的直線上.如直角三角形斜邊中點到三頂點距離相等等等.8、D【解析】

利用弧長公式列出方程直接求解,即可得到答案.【詳解】由題意,弧長的弧所對的圓心角為2弧度,則,解得,故選D.【點睛】本題主要考查了圓的半徑的求法,考查弧長公式等基礎(chǔ)知識,考查了推理能力與計算能力,是基礎(chǔ)題.9、B【解析】

根據(jù)為定值,那么乘以后值不變,由基本不等式可消去x,y后,對得到的不等式因式分解,即可解得m的值.【詳解】因為,,,所以.因為不等式恒成立,所以,整理得,解得,即.【點睛】本題考查基本不等式,由為定值和已知不等式相乘來構(gòu)造基本不等式,最后含有根式的因式分解也是解題關(guān)鍵.10、D【解析】試題分析:本題是選擇題,可采用逐一檢驗,利用特殊值法進行檢驗,很快問題得以解決.解:∵a>b,c>d;∴設(shè)a=1,b=-1,c=-2,d=-5,選項A,1-(-2)>-1-(-5),不成立;選項B,1(-2)>(-1)(-5),不成立;取選項C,,不成立,故選D考點:不等式的性質(zhì)點評:本題主要考查了基本不等式,基本不等式在考綱中是C級要求,本題屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

首先要用誘導公式得到角的正弦值,根據(jù)角是第二象限的角得到角的余弦值,再用誘導公式即可得到結(jié)果.【詳解】解:,又是第二象限角故,故答案為.【點睛】本題考查同角的三角函數(shù)的關(guān)系,本題解題的關(guān)鍵是誘導公式的應(yīng)用,熟練應(yīng)用誘導公式是解決三角函數(shù)問題的必備技能,屬于基礎(chǔ)題.12、【解析】由已知,是與的等比中項,則則,當且僅當時等號成立故答案為2【點睛】本題考查基本不等式的性質(zhì)、等比數(shù)列的性質(zhì),其中熟練應(yīng)用“乘1法”是解題的關(guān)鍵.13、1.【解析】

取AC的中點E,連結(jié)DE,BE,可知DE⊥AC,由平面ACD⊥平面ABC,可得DE⊥平面ABC,DE⊥BE,而,再結(jié)合ABCD是正方形可求出.【詳解】取AC的中點E,連結(jié)DE,BE,顯然DE⊥AC,因為平面ACD⊥平面ABC,所以DE⊥平面ABC,所以DE⊥BE,而,所以,.【點睛】本題考查了空間中兩點間的距離,把空間角轉(zhuǎn)化為平面角是解決本題的關(guān)鍵.14、【解析】

根據(jù)題意可知,可得,依次計算,,不難發(fā)現(xiàn):邊長依次為,,,,構(gòu)成是公比為的等比數(shù)列,正方形的面積:依次,,不難發(fā)現(xiàn):邊長依次為,,,,正方形的面積構(gòu)成是公比為的等比數(shù)列.利用無窮等比數(shù)列的和公式可得所有正方形的面積的和.【詳解】根據(jù)題意可知,可得,依次計算,,是公比為的等比數(shù)列,正方形的面積:依次,,邊長依次為,,,,正方形的面積構(gòu)成是公比為的等比數(shù)列.所有正方形的面積的和.故答案為:【點睛】本題考查了無窮等比數(shù)列的和公式的運用.利用邊長關(guān)系建立等式,找到公比是解題的關(guān)鍵.屬于中檔題.15、﹣2.【解析】

由題意利用同角三角函數(shù)的基本關(guān)系,二倍角公式,求得式子的值.【詳解】由,,知,則,.故答案為:,.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.16、【解析】

首先求出在上的兩個零點,再根據(jù)周期性算出至少含有30個零點時的值即可【詳解】根據(jù),即,故,或,∵在區(qū)間(且)上至少含有30個零點,∴不妨假設(shè)(此時,),則此時的最小值為,(此時,),∴的最小值為,故答案為:【點睛】本題函數(shù)零點個數(shù)的判斷,解決此類問題通常結(jié)合周期、函數(shù)圖形進行解決。屬于難題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】

(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【詳解】(1)由題意知,由正弦定理可得,因為,則,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中解答中熟記三角形的正弦、余弦定理,準確計算是解答的掛念,著重考查了推理與計算能力,屬于基礎(chǔ)題.18、(1)80;(2)兩個班級數(shù)學學習水平相同,(1)班成績更穩(wěn)定一些.【解析】

(1)將成績按照從小到大順序排序,根據(jù)中位數(shù)定義可計算得到結(jié)果;(2)根據(jù)莖葉圖數(shù)據(jù)計算出兩個班的數(shù)學成績平均數(shù),根據(jù)方差計算公式可求得樣本方差;由,可得到結(jié)論.【詳解】(1)這份成績按照從小到大的順序排列為:,,,,,,,,,,,中位數(shù)為:(2)計算(1)班平均數(shù)為:方差為:(2)班平均數(shù)為:方差為:由,知:兩個班級數(shù)學學習水平相同,(1)班成績更穩(wěn)定一些【點睛】本題考查根據(jù)莖葉圖計算數(shù)據(jù)的中位數(shù)、平均數(shù)及方差、利用方差比較數(shù)據(jù)的穩(wěn)定性的知識;關(guān)鍵是能夠熟練掌握中位數(shù)、平均數(shù)及方差的計算公式,屬于基礎(chǔ)題.19、(1)(2)【解析】

(1)由題可得,利用正弦定理邊化角以及兩角和的正弦公式整理可得,進而得到答案.(2)由正弦定理得,,所以周長,化簡整理得,再根據(jù)角的范圍求得答案.【詳解】解:(1)由與共線,得,由正弦定理得:,所以又,所以因為,解得.(2)由正弦定理得:,則,,所以周長因為,,所以,故【點睛】本題考查的知識點有正弦定理邊化角以及兩角和差的正弦公式,三角函數(shù)的性質(zhì),屬于一般題.20、(1)的最小正周期為(2)的單調(diào)增區(qū)間為【解析】試題分析:(1)化簡函數(shù)的解析式得,根據(jù)周期公式求得函數(shù)的周期;(2)由求得的取值范圍即為函數(shù)的單調(diào)增區(qū)間,由求得取值范圍即為函數(shù)的單調(diào)減區(qū)間。試題解析:(Ⅰ)∴的最小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論