北京市二中學(xué)教育集團(tuán)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷及答案解析_第1頁
北京市二中學(xué)教育集團(tuán)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷及答案解析_第2頁
北京市二中學(xué)教育集團(tuán)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷及答案解析_第3頁
北京市二中學(xué)教育集團(tuán)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷及答案解析_第4頁
北京市二中學(xué)教育集團(tuán)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京市二中學(xué)教育集團(tuán)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知是中的邊上的一點(diǎn),,的平分線交邊于,交于,那么下列結(jié)論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE2.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點(diǎn)C落在直線AD上的C處,P為直線AD上的一點(diǎn),則線段BP的長可能是()A.3 B.5 C.6 D.103.一元一次不等式2(1+x)>1+3x的解集在數(shù)軸上表示為()A. B. C. D.4.下列計(jì)算錯誤的是()A.4x3?2x2=8x5B.a(chǎn)4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b25.如圖,⊙O的直徑AB與弦CD的延長線交于點(diǎn)E,若DE=OB,∠AOC=84°,則∠E等于()A.42° B.28° C.21° D.20°6.如圖,等邊△ABC的邊長為1cm,D、E分別AB、AC是上的點(diǎn),將△ADE沿直線DE折疊,點(diǎn)A落在點(diǎn)A′處,且點(diǎn)A′在△ABC外部,則陰影部分的周長為()cmA.1 B.2 C.3 D.47.已知:a、b是不等于0的實(shí)數(shù),2a=3b,那么下列等式中正確的是()A.a(chǎn)b=23 B.a(chǎn)8.如圖:將一個矩形紙片,沿著折疊,使點(diǎn)分別落在點(diǎn)處.若,則的度數(shù)為()A. B. C. D.9.如圖,在數(shù)軸上有點(diǎn)O,A,B,C對應(yīng)的數(shù)分別是0,a,b,c,AO=2,OB=1,BC=2,則下列結(jié)論正確的是()A. B. C. D.10.下列計(jì)算正確的是()A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2 D.(a+b)2=a2+a2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線經(jīng)過、兩點(diǎn),則不等式的解集為_______.12.已知一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是3,則另一組新數(shù)據(jù)x1+1,x2+2,x3+3,x4+4,x5+5的平均數(shù)是_____.13.函數(shù)y=的自變量x的取值范圍為____________.14.已知|x|=3,y2=16,xy<0,則x﹣y=_____.15.如圖,點(diǎn)A,B在反比例函數(shù)(k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是______.16.我國古代《易經(jīng)》一書中記載,遠(yuǎn)古時(shí)期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,用來記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_____個.三、解答題(共8題,共72分)17.(8分)數(shù)學(xué)活動小組的小穎、小明和小華利用皮尺和自制的兩個直角三角板測量學(xué)校旗桿MN的高度,如示意圖,△ABC和△A′B′C′是他們自制的直角三角板,且△ABC≌△A′B′C′,小穎和小明分別站在旗桿的左右兩側(cè),小穎將△ABC的直角邊AC平行于地面,眼睛通過斜邊AB觀察,一邊觀察一邊走動,使得A、B、M共線,此時(shí),小華測量小穎距離旗桿的距離DN=19米,小明將△A′B′C′的直角邊B′C′平行于地面,眼睛通過斜邊B′A′觀察,一邊觀察一邊走動,使得B′、A′、M共線,此時(shí),小華測量小明距離旗桿的距離EN=5米,經(jīng)測量,小穎和小明的眼睛與地面的距離AD=1米,B′E=1.5米,(他們的眼睛與直角三角板頂點(diǎn)A,B′的距離均忽略不計(jì)),且AD、MN、B′E均與地面垂直,請你根據(jù)測量的數(shù)據(jù),計(jì)算旗桿MN的高度.18.(8分)問題探究(1)如圖①,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點(diǎn)D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.19.(8分)在數(shù)學(xué)活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點(diǎn)在另一個三角尺的斜邊上移動,在這個運(yùn)動過程中,有哪些變量,能研究它們之間的關(guān)系嗎?小林選擇了其中一對變量,根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對它們之間的關(guān)系進(jìn)行了探究.下面是小林的探究過程,請補(bǔ)充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點(diǎn),射線DE⊥BC于點(diǎn)E,∠EDF=60°,射線DF與射線AC交于點(diǎn)F.設(shè)B,E兩點(diǎn)間的距離為xcm,E,F(xiàn)兩點(diǎn)間的距離為ycm.(2)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))(3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△DEF為等邊三角形時(shí),BE的長度約為cm.20.(8分)如圖,在△ABC中,∠ACB=90°,點(diǎn)D是AB上一點(diǎn),以BD為直徑的⊙O和AB相切于點(diǎn)P.(1)求證:BP平分∠ABC;(2)若PC=1,AP=3,求BC的長.21.(8分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,求海警船到大事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)22.(10分)一家蔬菜公司收購到某種綠色蔬菜140噸,準(zhǔn)備加工后進(jìn)行銷售,銷售后獲利的情況如下表所示:銷售方式

粗加工后銷售

精加工后銷售

每噸獲利(元)

1000

2000

已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時(shí)進(jìn)行.受季節(jié)等條件的限制,公司必須在一定時(shí)間內(nèi)將這批蔬菜全部加工后銷售完.(1)如果要求12天剛好加工完140噸蔬菜,則公司應(yīng)安排幾天精加工,幾天粗加工?(2)如果先進(jìn)行精加工,然后進(jìn)行粗加工.①試求出銷售利潤元與精加工的蔬菜噸數(shù)之間的函數(shù)關(guān)系式;②若要求在不超過10天的時(shí)間內(nèi),將140噸蔬菜全部加工完后進(jìn)行銷售,則加工這批蔬菜最多獲得多少利潤?此時(shí)如何分配加工時(shí)間?23.(12分)解不等式組并寫出它的所有整數(shù)解.24.某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)相似三角形的判定,采用排除法,逐項(xiàng)分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.【點(diǎn)睛】本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應(yīng)邊和對應(yīng)角.2、D【解析】

過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質(zhì)得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點(diǎn)B到AD的最短距離是8,得出選項(xiàng)即可.【詳解】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,

∵將△ABC沿AB所在直線翻折,使點(diǎn)C落在直線AD上的C′處,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面積等于12,邊AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即點(diǎn)B到AD的最短距離是8,

∴BP的長不小于8,

即只有選項(xiàng)D符合,

故選D.【點(diǎn)睛】本題考查的知識點(diǎn)是折疊的性質(zhì),三角形的面積,角平分線性質(zhì)的應(yīng)用,解題關(guān)鍵是求出B到AD的最短距離,注意:角平分線上的點(diǎn)到角的兩邊的距離相等.3、B【解析】

按照解一元一次不等式的步驟求解即可.【詳解】去括號,得2+2x>1+3x;移項(xiàng)合并同類項(xiàng),得x<1,所以選B.【點(diǎn)睛】數(shù)形結(jié)合思想是初中常用的方法之一.4、B【解析】

根據(jù)單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母分別相乘,對于只在一個單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個因式;合并同類項(xiàng)的法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧記為:“首平方,末平方,首末兩倍中間放”可得答案.【詳解】A選項(xiàng):4x3?1x1=8x5,故原題計(jì)算正確;

B選項(xiàng):a4和a3不是同類項(xiàng),不能合并,故原題計(jì)算錯誤;

C選項(xiàng):(-x1)5=-x10,故原題計(jì)算正確;

D選項(xiàng):(a-b)1=a1-1ab+b1,故原題計(jì)算正確;

故選:B.【點(diǎn)睛】考查了整式的乘法,關(guān)鍵是掌握整式的乘法各計(jì)算法則.5、B【解析】

利用OB=DE,OB=OD得到DO=DE,則∠E=∠DOE,根據(jù)三角形外角性質(zhì)得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC進(jìn)行計(jì)算即可.【詳解】解:連結(jié)OD,如圖,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,

∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故選:B.【點(diǎn)睛】本題考查了圓的認(rèn)識:掌握與圓有關(guān)的概念(

弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).也考查了等腰三角形的性質(zhì).6、C【解析】

由題意得到DA′=DA,EA′=EA,經(jīng)分析判斷得到陰影部分的周長等于△ABC的周長即可解決問題.【詳解】如圖,由題意得:DA′=DA,EA′=EA,∴陰影部分的周長=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故選C.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)以及折疊的問題,折疊問題的實(shí)質(zhì)是“軸對稱”,解題關(guān)鍵是找出經(jīng)軸對稱變換所得的等量關(guān)系.7、B【解析】∵2a=3b,∴ab=3故選B.8、B【解析】根據(jù)折疊前后對應(yīng)角相等可知.

解:設(shè)∠ABE=x,

根據(jù)折疊前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.

故選B.“點(diǎn)睛”本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.9、C【解析】

根據(jù)AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,進(jìn)行判斷即可解答.【詳解】解:∵AO=2,OB=1,BC=2,∴a=-2,b=1,c=3,∴|a|≠|(zhì)c|,ab<0,,,故選:C.【點(diǎn)睛】此題考查有理數(shù)的大小比較以及絕對值,解題的關(guān)鍵結(jié)合數(shù)軸求解.10、B【解析】

利用完全平方公式及平方差公式計(jì)算即可.【詳解】解:A、原式=a2-6a+9,本選項(xiàng)錯誤;

B、原式=a2-9,本選項(xiàng)正確;

C、原式=a2-2ab+b2,本選項(xiàng)錯誤;

D、原式=a2+2ab+b2,本選項(xiàng)錯誤,

故選:B.【點(diǎn)睛】本題考查了平方差公式和完全平方公式,熟練掌握公式是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1<X<2【解析】經(jīng)過點(diǎn)A,∴不等式x>kx+b>-2的解集為.12、1【解析】

根據(jù)平均數(shù)的性質(zhì)知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均數(shù),只要把數(shù)x1、x2、x3、x4、x5的和表示出即可.【詳解】∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是3,∴x1+x2+x3+x4+x5=15,則新數(shù)據(jù)的平均數(shù)為=1,故答案為:1.【點(diǎn)睛】本題考查的是樣本平均數(shù)的求法.解決本題的關(guān)鍵是用一組數(shù)據(jù)的平均數(shù)表示另一組數(shù)據(jù)的平均數(shù).13、x≥-1【解析】試題分析:由題意得,x+1≥0,解得x≥﹣1.故答案為x≥﹣1.考點(diǎn):函數(shù)自變量的取值范圍.14、±3【解析】分析:本題是絕對值、平方根和有理數(shù)減法的綜合試題,同時(shí)本題還滲透了分類討論的數(shù)學(xué)思想.詳解:因?yàn)閨x|=1,所以x=±1.因?yàn)閥2=16,所以y=±2.又因?yàn)閤y<0,所以x、y異號,當(dāng)x=1時(shí),y=-2,所以x-y=3;當(dāng)x=-1時(shí),y=2,所以x-y=-3.故答案為:±3.點(diǎn)睛:本題是一道綜合試題,本題中有分類的數(shù)學(xué)思想,求解時(shí)要注意分類討論.15、【解析】試題解析:過點(diǎn)B作直線AC的垂線交直線AC于點(diǎn)F,如圖所示.∵△BCE的面積是△ADE的面積的2倍,E是AB的中點(diǎn),∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均為BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴點(diǎn)A的坐標(biāo)為(,3),點(diǎn)B的坐標(biāo)為(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積公式以及勾股定理.構(gòu)造直角三角形利用勾股定理巧妙得出k值是解題的關(guān)鍵.16、1【解析】分析:類比于現(xiàn)在我們的十進(jìn)制“滿十進(jìn)一”,可以表示滿六進(jìn)一的數(shù)為:萬位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點(diǎn)睛:本題是以古代“結(jié)繩計(jì)數(shù)”為背景,按滿六進(jìn)一計(jì)數(shù),運(yùn)用了類比的方法,根據(jù)圖中的數(shù)學(xué)列式計(jì)算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識,另一方面也考查了學(xué)生的思維能力.三、解答題(共8題,共72分)17、11米【解析】

過點(diǎn)C作CE⊥MN于E,過點(diǎn)C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】解:過點(diǎn)C作CE⊥MN于E,過點(diǎn)C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴AEMF∴19MF∴MF=192∵NF=B'E=1.5,MN=MF+NF,∴MN=MF+B'E=19答:旗桿MN的高度約為11米.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,正確的作出輔助線是解題的關(guān)鍵.18、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】

(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進(jìn)而得到EF=FG問題即可解決;(2)將△ABD繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當(dāng)D、C、E三點(diǎn)共線時(shí),DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點(diǎn)E作EF⊥BC于點(diǎn)F,連接DE,由旋轉(zhuǎn)的性質(zhì)得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點(diǎn)D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BCE,連接DE.由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當(dāng)D、C、E三點(diǎn)共線時(shí),DE存在最大值,且最大值為6,∴BD的最大值為6;(3)存在.如圖③,以BC為邊作等邊三角形BCE,過點(diǎn)E作EF⊥BC于點(diǎn)F,連接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等邊三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC為直徑作⊙F,則點(diǎn)D在⊙F上,連接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值為2+2.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì).19、(1)見解析;(1)3.5;(3)見解析;(4)3.1【解析】

根據(jù)題意作圖測量即可.【詳解】(1)取點(diǎn)、畫圖、測量,得到數(shù)據(jù)為3.5故答案為:3.5(3)由數(shù)據(jù)得(4)當(dāng)△DEF為等邊三角形是,EF=DE,由∠B=45°,射線DE⊥BC于點(diǎn)E,則BE=EF.即y=x所以,當(dāng)(1)中圖象與直線y=x相交時(shí),交點(diǎn)橫坐標(biāo)即為BE的長,由作圖、測量可知x約為3.1.【點(diǎn)睛】本題為動點(diǎn)問題的函數(shù)圖象探究題,解得關(guān)鍵是按照題意畫圖測量,并將條件轉(zhuǎn)化成函數(shù)圖象研究.20、(1)證明見解析;(2).【解析】試題分析:(1)連接OP,首先證明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;

(2)作PH⊥AB于H.首先證明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解決問題.試題解析:(1)連接OP,∵AC是⊙O的切線,∴OP⊥AC,∴∠APO=∠ACB=90°,∴OP∥BC,∴∠OPB=∠PBC,∵OP=OB,∴∠OPB=∠OBP,∴∠PBC=∠OBP,∴BP平分∠ABC;(2)作PH⊥AB于H.則∠AHP=∠BHP=∠ACB=90°,又∵∠PBC=∠OBP,PB=PB,∴△PBC≌△PBH,∴PC=PH=1,BC=BH,在Rt△APH中,AH=,在Rt△ACB中,AC2+BC2=AB2∴(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得.21、小時(shí)【解析】

過點(diǎn)C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根據(jù)時(shí)間=路程÷速度即可求出海警船到大事故船C處所需的時(shí)間.【詳解】解:如圖,過點(diǎn)C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論