2025屆遼寧省葫蘆島市遼寧實驗中學東戴河分校數(shù)學高一下期末檢測模擬試題含解析_第1頁
2025屆遼寧省葫蘆島市遼寧實驗中學東戴河分校數(shù)學高一下期末檢測模擬試題含解析_第2頁
2025屆遼寧省葫蘆島市遼寧實驗中學東戴河分校數(shù)學高一下期末檢測模擬試題含解析_第3頁
2025屆遼寧省葫蘆島市遼寧實驗中學東戴河分校數(shù)學高一下期末檢測模擬試題含解析_第4頁
2025屆遼寧省葫蘆島市遼寧實驗中學東戴河分校數(shù)學高一下期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆遼寧省葫蘆島市遼寧實驗中學東戴河分校數(shù)學高一下期末檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)y=2cosx-1A.2,-2 B.1,-3 C.1,-1 D.2,-12.已知數(shù)列、、、、,可猜想此數(shù)列的通項公式是().A. B.C. D.3.已知,,,則實數(shù)、、的大小關(guān)系是()A. B.C. D.4.在中,A,B,C的對邊分別為a,b,c,,則的形狀一定是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.等腰直角三角形5.《九章算術(shù)》中有如下問題:“今有勾五步,股一十二步,問勾中容圓,徑幾何?”其大意:“已知直角三角形兩直角邊長分別為5步和12步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)若向此三角形內(nèi)隨機投一粒豆子,則豆子落在其內(nèi)切圓外的概率是()A. B. C. D.6.已知是函數(shù)的兩個零點,則()A. B.C. D.7.已知某圓柱的底面周長為12,高為2,矩形是該圓柱的軸截面,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C.3 D.28.若,是夾角為的兩個單位向量,則與的夾角為()A. B. C. D.9.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.10.已知某數(shù)列的前項和(為非零實數(shù)),則此數(shù)列為()A.等比數(shù)列 B.從第二項起成等比數(shù)列C.當時為等比數(shù)列 D.從第二項起的等比數(shù)列或等差數(shù)列二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角,,所對的邊分別為,,,若,則角最大值為______.12.等比數(shù)列滿足其公比_________________13.函數(shù)的最大值為.14.已知等差數(shù)列,若,則______.15.已知是第二象限角,且,且______.16.在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,已知四棱錐的側(cè)棱底面,且底面是直角梯形,,,,,,點在棱上,且.(1)證明:平面;(2)求三棱錐的體積.18.已知向量,,函數(shù).(1)若,求的取值集合;(2)當時,不等式恒成立,求的取值范圍.19.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求點到平面的距離.20.某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機抽取100名學生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:組號分組頻數(shù)頻率第1組[50,60)50.05第2組[60,70)0.35第3組[70,80)30第4組[80,90)200.20第5組[90,100]100.10合計1001.00(Ⅰ)求的值;(Ⅱ)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.21.已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面積的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)余弦函數(shù)有界性確定最值.【詳解】因為-1≤cosx≤1,所以【點睛】本題考查余弦函數(shù)有界性以及函數(shù)最值,考查基本求解能力,屬基本題.2、D【解析】

利用賦值法逐項排除可得出結(jié)果.【詳解】對于A選項,,不合乎題意;對于B選項,,不合乎題意;對于C選項,,不合乎題意;對于D選項,當為奇數(shù)時,,此時,當為偶數(shù)時,,此時,合乎題意.故選:D.【點睛】本題考查利用觀察法求數(shù)列的通項,考查推理能力,屬于中等題.3、B【解析】

將bc化簡為最簡形式,再利用單調(diào)性比較大小?!驹斀狻恳驗樵趩握{(diào)遞增所以【點睛】本題考查利用的單調(diào)性判斷大小,屬于基礎題。4、A【解析】

利用平方化倍角公式和邊化角公式化簡得到,結(jié)合三角形內(nèi)角和定理化簡得到,即可確定的形狀.【詳解】化簡得即即是直角三角形故選A【點睛】本題考查了平方化倍角公式和正弦定理的邊化角公式,在化簡時,將邊化為角,使邊角混雜變統(tǒng)一,還有三角形內(nèi)角和定理的運用,這一點往往容易忽略.5、C【解析】

本題首先可以根據(jù)直角三角形的三邊長求出三角形的內(nèi)切圓半徑,然后分別計算出內(nèi)切圓和三角形的面積,最后通過幾何概型的概率計算公式即可得出答案.【詳解】如圖所示,直角三角形的斜邊長為,設內(nèi)切圓的半徑為,則,解得.所以內(nèi)切圓的面積為,所以豆子落在內(nèi)切圓外部的概率,故選C.【點睛】本題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關(guān)的幾何概型問題關(guān)鍵是計算問題的總面積以及事件的面積;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.6、A【解析】

在同一直角坐標系中作出與的圖象,設兩函數(shù)圖象的交點,依題意可得,利用對數(shù)的運算性質(zhì)結(jié)合圖象即可得答案.【詳解】解:,在同一直角坐標系中作出與的圖象,

設兩函數(shù)圖象的交點,

則,即,

又,

所以,,即,

所以①;

又,故,即②,由①②得:,

故選:A.【點睛】本題考查根的存在性及根的個數(shù)判斷,依題意可得是關(guān)鍵,考查作圖能力與運算求解能力,屬于難題.7、A【解析】

由圓柱的側(cè)面展開圖是矩形,利用勾股定理求解.【詳解】圓柱的側(cè)面展開圖如圖,圓柱的側(cè)面展開圖是矩形,且矩形的長為12,寬為2,則在此圓柱側(cè)面上從到的最短路徑為線段,.故選:A.【點睛】本題考查圓柱側(cè)面展開圖中的最短距離問題,是基礎題.8、A【解析】

根據(jù)條件可求出,,從而可求出,這樣即可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】由題得;,,所以;;又;的夾角為.故選.【點睛】考查向量數(shù)量積的運算及計算公式,向量長度的求法,向量夾角的余弦公式,向量夾角的范圍.9、C【解析】

通過三視圖可以判斷這一個是半個圓柱與半個圓錐形成的組合體,利用圓柱和圓錐的體積公式可以求出這個組合體的體積.【詳解】該幾何體為半個圓柱與半個圓錐形成的組合體,故,故選C.【點睛】本題考查了利用三視圖求組合體圖形的體積,考查了運算能力和空間想象能力.10、D【解析】

設數(shù)列的前項和為,運用數(shù)列的遞推式:當時,,當時,,結(jié)合等差數(shù)列和等比數(shù)列的定義和通項公式,即可得到所求結(jié)論.【詳解】設數(shù)列的前項和為,對任意的,(為非零實數(shù)).當時,;當時,.若,則,此時,該數(shù)列是從第二項起的等差數(shù)列;若且,不滿足,當時,,此時,該數(shù)列是從第二項起的等比數(shù)列.綜上所述,此數(shù)列為從第二項起的等比數(shù)列或等差數(shù)列.故選:D.【點睛】本題考查數(shù)列的遞推式的運用,等差數(shù)列和等比數(shù)列的定義和通項公式,考查分類討論思想和運算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)余弦定理列式,再根據(jù)基本不等式求最值【詳解】因為所以角最大值為【點睛】本題考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,屬中檔題12、【解析】

觀察式子,將兩式相除即可得到答案.【詳解】根據(jù)題意,可知,于是.【點睛】本題主要考查等比數(shù)列公比的相關(guān)計算,難度很小.13、【解析】略14、【解析】

利用等差數(shù)列的通項公式直接求解.【詳解】設等差數(shù)列公差為,由,得,解得.故答案:.【點睛】本題考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,屬于基礎題.15、【解析】

利用同角三角函數(shù)的基本關(guān)系求出,然后利用誘導公式可求出的值.【詳解】是第二象限角,則,由誘導公式可得.故答案為:.【點睛】本題考查利用同角三角函數(shù)的基本關(guān)系和誘導公式求值,考查計算能力,屬于基礎題.16、【解析】

直接利用長度型幾何概型求解即可.【詳解】因為區(qū)間總長度為,符合條件的區(qū)間長度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為,故答案為:.【點睛】解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與長度有關(guān)的幾何概型問題關(guān)鍵是計算問題的總長度以及事件的長度.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)4【解析】

(1)取的三等分點,使,證四邊形為平行四邊形,運用線面平行判定定理證明.(2)三棱錐的體積可以用求出結(jié)果.【詳解】(1)證明:取的三等分點,使,連接,.因為,,所以,.因為,,所以,,所以四邊形為平行四邊形,所以,因為平面,平面,所以平面.(2)解:因為,,所以的面積為,因為底面,所以三棱錐的高為,所以三棱錐的體積為.因為,所以三棱錐的高為,所以三棱錐的體積為,故三棱錐的體積為.【點睛】本題考查了線面平行的判定定理、三棱錐體積的計算,在證明線面平行時需要構(gòu)造平行四邊形來證明,三棱錐的體積計算可以選用割、補等方法.18、(1)或;(2).【解析】

(1)由題化簡得.再解方程即得解;(2)由題得在上恒成立,再求不等式右邊函數(shù)的最小值即得解.【詳解】解:(1)因為,,所以.因為,所以.解得或.故的取值集合為.(2)由(1)可知,所以在上恒成立.因為,所以,所以在上恒成立.設,則.所以.因為,所以,所以.故的取值范圍為.【點睛】本題主要考查三角恒等變換和解三角方程,考查三角函數(shù)最值的求法和恒成立問題,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.19、(1)見解析;(2)【解析】

(1)作為棱的中點,連結(jié),,通過證明平面可得.(2)根據(jù)等體積法:可求得.【詳解】(1)證明:連接,.∵,,∴是等邊三角形.作為棱的中點,連結(jié),,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分別為,的中點,∴,∴.又,∴平面.又平面,∴.(2)解:連接,∵,,∴為正三角形.∵為的中點,∴.又∵平面平面,且平面平面,平面,∴平面.∴.設點到平面,的距離.在中,,,則.又∵,∴,則.【點睛】本題考查了直線與平面垂直的判定與性質(zhì),考查了等體積法求點面距,屬于中檔題.20、(1)35,0.30;(2).【解析】試題分析:(Ⅰ)直接利用頻率和等于1求出b,用樣本容量乘以頻率求a的值;(Ⅱ)由分層抽樣方法求出所抽取的6人中第三、第四、第五組的學生數(shù),利用列舉法寫出從中任意抽取2人的所有方法種數(shù),查出2人至少1人來自第四組的事件個數(shù),然后利用古典概型的概率計算公式求解.試題解析:(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30(Ⅱ)因為第3、4、5組共有60名學生,所以利用分層抽樣在60名學生中抽取6名學生,每組分別為,第3組:×30=3人,第4組:×20=2人,第5組:×10=1人,所以第3、4、5組應分別抽取3人、2人、1人設第3組的3位同學為A1、A2、A3,第4組的2位同學為B1、B2,第5組的1位同學為C1,則從6位同學中抽2位同學有15種可能,如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4組被入選的有9種,所以其中第4組的2位同學至少有1位同學入選的概率為=點睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.21、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用正弦定理,三角函數(shù)恒等變換,可得,結(jié)合范圍,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面積公式即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論