山東省濰坊市壽光市現(xiàn)代中學(xué)2022-2023學(xué)年數(shù)學(xué)高三上期末調(diào)研試題含解析_第1頁
山東省濰坊市壽光市現(xiàn)代中學(xué)2022-2023學(xué)年數(shù)學(xué)高三上期末調(diào)研試題含解析_第2頁
山東省濰坊市壽光市現(xiàn)代中學(xué)2022-2023學(xué)年數(shù)學(xué)高三上期末調(diào)研試題含解析_第3頁
山東省濰坊市壽光市現(xiàn)代中學(xué)2022-2023學(xué)年數(shù)學(xué)高三上期末調(diào)研試題含解析_第4頁
山東省濰坊市壽光市現(xiàn)代中學(xué)2022-2023學(xué)年數(shù)學(xué)高三上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.黨的十九大報告明確提出:在共享經(jīng)濟等領(lǐng)域培育增長點、形成新動能.共享經(jīng)濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經(jīng)濟現(xiàn)象.為考察共享經(jīng)濟對企業(yè)經(jīng)濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進行共享經(jīng)濟對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.2.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.3.達芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數(shù)據(jù):(其中).根據(jù)測量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角大約等于()A. B. C. D.4.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.5.已知集合,,,則集合()A. B. C. D.6.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或7.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.168.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.49.已知是等差數(shù)列的前項和,,,則()A.85 B. C.35 D.10.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.11.已知集合,則()A. B. C. D.12.已知關(guān)于的方程在區(qū)間上有兩個根,,且,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正方形的邊長為2,圓內(nèi)切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.14.已知(為虛數(shù)單位),則復(fù)數(shù)________.15.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.16.在矩形ABCD中,,,點E,F(xiàn)分別為BC,CD邊上動點,且滿足,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.18.(12分)在四棱錐的底面是菱形,底面,,分別是的中點,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點的位置;若不存在,說明理由.19.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個實數(shù)解、、(),求證:.20.(12分)已知橢圓:,不與坐標軸垂直的直線與橢圓交于,兩點.(Ⅰ)若線段的中點坐標為,求直線的方程;(Ⅱ)若直線過點,點滿足(,分別為直線,的斜率),求的值.21.(12分)已知a>0,證明:1.22.(10分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果,故選D.2、B【解析】

由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.3、A【解析】

由已知,設(shè).可得.于是可得,進而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計算能力,屬于中檔題.4、B【解析】

①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當(dāng)內(nèi)角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎(chǔ)題.5、D【解析】

根據(jù)集合的混合運算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎(chǔ)題.6、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.7、C【解析】

根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.8、B【解析】

解出,分別代入選項中的值進行驗證.【詳解】解:,.當(dāng)時,,此時不成立.當(dāng)時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關(guān)系.9、B【解析】

將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和的計算,屬于基礎(chǔ)題.10、C【解析】

首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.11、A【解析】

考慮既屬于又屬于的集合,即得.【詳解】.故選:【點睛】本題考查集合的交運算,屬于基礎(chǔ)題.12、C【解析】

先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運算,關(guān)鍵在于恰當(dāng)?shù)貙ο蛄窟M行轉(zhuǎn)換,便于計算解題.14、【解析】

解:故答案為:【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,屬于基礎(chǔ)題.15、【解析】

先由題意設(shè)向量的坐標,再結(jié)合平面向量數(shù)量積的運算及不等式可得解.【詳解】由是單位向量.若,,設(shè),則,,又,則,則,則,又,所以,(當(dāng)或時取等)即的取值范圍是,,故答案為:,.【點睛】本題考查了平面向量數(shù)量積的坐標運算,意在考查學(xué)生對這些知識的理解掌握水平.16、【解析】

利用平面直角坐標系,設(shè)出點E,F(xiàn)的坐標,由可得,利用數(shù)量積運算求得,再利用線性規(guī)劃的知識求出的最大值.【詳解】建立平面直角坐標系,如圖(1)所示:設(shè),,,即,又,令,其中,畫出圖形,如圖(2)所示:當(dāng)直線經(jīng)過點時,取得最大值.故答案為:【點睛】本題考查了向量數(shù)量積的坐標運算、簡單的線性規(guī)劃問題,解題的關(guān)鍵是建立恰當(dāng)?shù)淖鴺讼担瑢儆诨A(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導(dǎo)后討論當(dāng)時和時的單調(diào)性證明,求出實數(shù)的取值范圍先求出、的通項公式,利用當(dāng)時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當(dāng)且僅當(dāng)取等號).故在上為增函數(shù).①當(dāng)時,,故在上為增函數(shù),所以恒成立,故符合題意;②當(dāng)時,由于,,根據(jù)零點存在定理,必存在,使得,由于在上為增函數(shù),故當(dāng)時,,故在上為減函數(shù),所以當(dāng)時,,故在上不恒成立,所以不符合題意.綜上所述,實數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當(dāng)時,,故當(dāng)時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導(dǎo)數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導(dǎo)數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計算較為復(fù)雜,本題屬于難題.18、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】

(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標系,求得直線的方向向量與平面的一個法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點O為坐標原點,建立如圖所示的空間直角坐標系,則:,設(shè)平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,而,設(shè)直線與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿足題意的點存在,設(shè),,據(jù)此可得:,即:,從而點F的坐標為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點F為中點時滿足題意.【點睛】本題主要考查線面垂直的判定定理與性質(zhì)定理,線面角的向量求法,立體幾何中的探索性問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.19、(1)①當(dāng)時,在單調(diào)遞增,②當(dāng)時,單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見解析【解析】

(1)先求解導(dǎo)函數(shù),然后對參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【詳解】(1),①當(dāng)時,恒成立,則在單調(diào)遞增②當(dāng)時,令得,解得,又,∴∴當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個實數(shù)解,則法一:雙偏移法設(shè),則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設(shè),∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞增,∴,即∴.法二:直接證明法∵,,在上單調(diào)遞增,∴要證,即證設(shè),則∴在上單調(diào)遞減,在上單調(diào)遞增∴,∴,即(注意:若沒有證明,扣3分)關(guān)于的證明:(1)且時,(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【點睛】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對于含參函數(shù)單調(diào)性的分析,可通過分析參數(shù)的臨界值,由此分類討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達到證明不等式的目的.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根據(jù)點差法,即可求得直線的斜率,則方程即可求得;(Ⅱ)設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達定理,根據(jù),即可求得參數(shù)的值.【詳解】(1)設(shè),,則兩式相減,可得.(*)因為線段的中點坐標為,所以,.代入(*)式,得.所以直線的斜率.所以直線的方程為,即.(Ⅱ)設(shè)直線:(),聯(lián)立整理得.所以,解得.所以,.所以,所以.所以.因為,所以.【點睛】本題考查中點弦問題的點差法求解,以及利用代數(shù)與幾何關(guān)系求直線方程,涉及韋達定理的應(yīng)用,屬中檔題.21、證明見解析【解析】

利用分析法,證明a即可.【詳解】證明:∵a>0,∴a1,∴a1≥0,∴要證明1,只要證明a1(a)1﹣4(a)+4,只要證明:a,∵a1,∴原不等式成立.【點睛】本題考查不等式的證明,著重考查分析法的運用,考查推理論證能力,屬于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論