版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
CONFIDENTIALANDPROPRIETARYAnyuseofthismaterialwithoutspecificpermissionofMcKinsey&CompanyisstrictlyprohibitedMcKinseyDigitalIntroductiontoDigitalManufacturing/Industry4.0NilsMüller
|July20,2017AgendaforCPStrainingdayTimeModelfactoryinaBoxExperiencecurrentstateExercisesonprofitperhourtargetfunction,datacapturinganddecisiontreesExperienceimprovedfuturestateGroup1Group28:00-12:0012:00-12:30IntroductiontoDigitalManufacturingWhatisDigitalManufacturing?IntroductiontoitscoreelementsandtypicalimprovementleversChallengesinimplementingDigitalManufacturingIntroductiontoDigitalManufacturingWhatisDigitalManufacturing?IntroductiontoitscoreelementsandtypicalimprovementleversChallengesinimplementingDigitalManufacturingModelfactoryinaBoxExperiencecurrentstateExercisesonprofitperhourtargetfunction,datacapturinganddecisiontreesExperienceimprovedfuturestate12:30-16:30LunchAgendaforthissessionIntroductiontoDigitalManufacturing/Industry4.0–whatishappeningintheIndustryandwhydowethinkweshouldactCoreleversforChemicalscompanies–concreteusecasesBreakWhatdoesthismeanforCPS–howtomovefromLeantoDigitalLean:coreconceptofDigitalManufacturingDiagnosticOpenQ&A8:00-9:009:00-10:0010:00-10:1510:15-11:3011:30-12:00AgendaforthissessionIntroductiontoDigitalManufacturing/Industry4.0–whatishappeningintheIndustryandwhydowethinkweshouldactCoreleversforChemicalscompanies–concreteusecasesBreakWhatdoesthismeanforCPS–howtomovefromLeantoDigitalLean:coreconceptofDigitalManufacturingDiagnosticOpenQ&A12:30-13:3013:30-14:3014:30-14:4514:45-16:0016:00-16:30Whydowetalkabout“Digital”andIndustry4.0?
Pace&magnitudeoftechnologicalchangeisstaggeringTheaveragewashingmachinetodayhasmorecomputingpowerthanNASAusedinitsApollo11missionin1969Moreinformationiscreatedevery2days
thanfrom0AD-2003ADMoretextmessagesaresenteachdaythanthepopulationoftheplanet100hoursofvideoareuploadedeveryminute35%ofallphotostakenarepostedtoFacebook10yearsago,sequencingahumangenometook$50millionandseveralyears;todayittakes<$10,000andafewdaysSOURCE:McKinseyOurdefinitionofIndustry4.0SOURCE:McKinseyQuarterly:TheInternetofThings(2010);McKinseyIndustry4.0
TheapplicationoftheInternetofThings(IoT)intraditionalindustries:
sensorsineverything,networkseverywhere,analyzeeverythingTheIoT1SensorsandactuatorsembeddedinphysicalobjectsLinkedthroughwired/wirelessnetworksCollectionofhugevolumesofdatathroughnetworksforanalysisObjectscansensetheenvironmentandcommunicate,thusbecomingtoolsforunderstandingcomplexityandrespondingtoit1AsdefinedbyBosch(foundingmemberoftheIndustry4.0platform,aninitiativeacrossindustryassociations),"theIoTisthenextgenerationoftheInternet.ItisaglobalsystemofIP-connectedcomputernetworks,sensors,actuators,machines,anddevices.MergingthisphysicalworldwiththevirtualworldoftheInternetandsoftwareenablescompaniesandconsumerstocreateandenjoynewservicesthatarefoundedonWeb-basedbusinessmodels.Thiswillhaveabigimpactonthewaywedobusiness."ManufacturingalreadygeneratesmoredatathananyothersectorPetabytesConstructionConsumerandRecreationalServicesResourceIndustriesUtilitiesWholesaleTransportationInsuranceEducationHealthcareSecuritiesandInvestmentServicesManufacturingGovernmentBankingCommunicationsandMediaRetailProfessionalServicesSOURCE:IDC;McKinseyGlobalInstituteanalysis1Discretemanufacturingconstitutes1072petabytes;Processmanufacturing740petabytesAnnualnewdatastoredbysector,2010Industry4.0isoftencalledthe4thIndustrialRevolutiondramaticallyshapingIndustryandourwaystoproduceSOURCE:StatistischesBundesamt;DeutscheBundesbank;Prognos;ThomasNipperdey;McKinsey1strevolution
2ndrevolution
4threvolution
3rd
revolution
Industry4.0isoftencalledthe4thIndustrialRevolutiondramaticallyshapingIndustryandourwaystoproduceSOURCE:StatistischesBundesamt;DeutscheBundesbank;Prognos;ThomasNipperdey;McKinsey1strevolution
(Water/Steam)2ndrevolution(Electricity)4threvolution
(Cyberphysicalsystems)Percent
ofinstalledbase100~10-20~30-50~80-90ReplacementofequipmentReplacement
ofcompleteloomnecessaryLittlereplacement,
astoolingequipmentcouldbekept,onlyconveyorbeltneededExistingmachineswillbeconnected,onlypartialreplacementofequipmentHighlevelofreplace-mentastoolingequipmentwasreplacedbymachines3rd
revolution
(Automation)From……to…Industry4.0isstillsomewhathypedinthemedia,long-termimplicationsandimpactstillnotfullyappreciatedSOURCE:McKinseyIndustry4.0GlobalExpertSurvey2015,1GoogleTrendsgivesestimateaboutsearchtrends(numberofqueriesforkeyword)/(totalgooglesearchqueries)8030701005040206010900201120132015GoogleTrendsgraphfor“Industrie4.0”inGermany1
RelativepercentageInterestonIndustry4.0asatopicisincreasedoverlastyearsShareof"Industrie4.0"(I4.0)queriesrelatedtototalsearchqueriessteadilyincreasingLong-termpotentialandimplicationsofI4.0effortsonplantsstillunder-appreciated2012201420172016Industry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessSOURCE:McKinseyDisruptive
technologiesTransformintoadigitalcompanyReach
nexthorizonofoperationaleffectivenessAdaptbusinessmodelstocaptureshiftingvalue
poolsDisruptive
technologiesTransformintoadigitalcompanyReach
nexthorizonofoperationaleffectivenessAdaptbusinessmodelstocaptureshiftingvalue
poolsIndustry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessSOURCE:McKinseyIndustry4.0:Disruptivetechnologiesthatwillchangethemanufacturingsectorbetweentodayand2025Industry4.0Analyticsand
intelligenceConversiontophysicalworldData,computationalpowerandconnectivityHumanmachineinteractionBigdata/opendataInternetofThings/Machine-tomachineCloudtechnologyTouchinterfacesandnext-levelgraphicaluserinterfacesVirtualandaugmentedrealityDigitizationandautomationofknowledgeworkAdvancedanalyticsAdditivemanufacturing
(i.e.,3DPrinting)Advancedrobotics(e.g.,human-robotcollaboration)EnergystorageandharvestingDISRUPTIVETECHNOLOGIESSOURCE:McKinseyTechnologicallimitationshavefinallybeenovercome–nowisthetimeforIndustry4.0LPWA1technologiesprovidewirelessinfrastructuretoconnectthousandsofIoTnodesPricesforIoThardwareexpectedtobeaslowasUSD1perIoTnodeinthenearfutureConnectivityAffordabilityInteroperability1Lowpowerwidearea
2Machine-to-machineCommunicationprotocolsespeciallydesignedforseam-lessM2M2inter-
actionhavebeendevelopedSOURCE:McKinseyDISRUPTIVETECHNOLOGIES1mbps10kbps1gbps100kbps100mbps10mbps100km1kbps100bps1km10km100m10mDatarate,logscale
Range,logscale
Nowisthetime–newwirelesstechnologiesprovideLPWAinfrastructure(802.11n)1IPv6overLowpowerWirelessPersonalAreaNetworksCurrentwirelessconnectivitytechnologiesCurrentlyavailableconnectivitystandardsrepresentatrade-
offbetweenrangeandtrans-missionrateManystandardsforlow-rangeconnectivityavailable;someopenstandardslike6LoWPAN1
makingafurthersteptowardsconnectingdevicesacrossdifferentnetworktypes(e.g.,integratingWi-Ficlientswith802.15.4-baseddevices)Justrecently,newtechnolo-gieswithultra-widerangesandlowdatarateshavebeenintroduced–thesetechnologiesareveryenergy-efficient
(IoTnodescanlastforyearswiththesamebatterypack)Keyinsightsandlearnings231123802.15.4SOURCE:McKinseyDISRUPTIVETECHNOLOGIESIndustry4.0quiz
Yourturn–1voteperquestion1GBstoragecostsonaverageUSD0.03.
Whatusedtobethepricein1992?YourvoteUSD1,000USD5,000USD10,000USD20,0001234DISRUPTIVETECHNOLOGIESSOURCE:McKinseySignificantdecreaseofcostfordatastorage,
computationandtransmissionSOURCE:DeloitteUniversityPress,,/users/hpm/book97/ch3/processor.list.txt,/internet-of-things-hardware,/product/CC3100/description;McKinseyStorageComputationConnection$perGB$per1milliontransistors$permbps10,000.001.0010.001,000.00100.000.100.012015101992200010,000.01,000.0100.010.01.00.120151020001.0000.1000.0100.0011,000.000100.00010.00020151020001992$222
$0.01$10,000
$0.03$1,200
$0.63DISRUPTIVETECHNOLOGIESCostofInternetofThingsnodeshascomedowndramatically,andisexpectedtofallstillfurtherOther4
~1.01.0-2.0-50%Sensor3
2020E52015MCU1
Connectivity2~1.02.5-4.00.3-1.00.1-0.8Unitprice,USDNosignificantcostsassociatedwithInternetofThingsconnectivityanymorePricesexpectedtocontinuetofalloverthenextfewyearsAdditionalcostsavingpotentialfromfutureintegrateddesignsolutionsCalculationdoesnotincludefixedcostssuchascostsforinfrastructure1CurrentpricesrangefromUSD0.3(e.g.,Cypress32-bit)toUSD1.2(e.g.,TI16-bit)dependentonspeed,quality,andintegratedmemorysize(rangesforlargerordervolumes)2Combinationoffiltertransceiverandantenna–additionalcostsforswitchesandamplifiersnotincluded3Forexample,temperature,position,pressure,gyroscope...4AdditionalcomponentslikeADCconverters,power-managementconverters,capacitors,resistor,fuse,PCB(listnotexhaustive)52020pricesestimatedbyinflatingcurrentpriceswithaCAGRof-15%p.a.SOURCE:;expertopinionDISRUPTIVETECHNOLOGIESArtificialintelligencesystemsalreadyautomate
tasks
thatusedtorequirehighlytrainedexpertsIBMWatson,
oncologyadvisorAragoAutopilotfor
ITservicemanagementSeveralUShospitalsuseWatsontoderiverecommendationsforindividualizedtreatmentplansforcancerpatientsSystemhasbeen"trained"withmillionsofmedicalresearcharticles,clinicaltrialreports,patienthistories,andfeedbackonproposedsolutionsfromspecialistdoctorsGoalistousesystemtobringleading-edgecancertherapiestocommunitysettingswithlimitedaccesstohigh-qualitymedicalcareSystemautomatesITservicemanage-ment(e.g.,ITILincident,problem,changemanagement)Algorithmsdonotexecutestaticscriptsbutdynamicallycombine"knowledgemodules"tohandlenewsituationsandlearnfromtheoutcomesSoftwareenablesaverageautomationratesof~90%leadingtoaverage
costreductionsof~30%(externalassessmentbyGartner)aswellasperformanceimprovementsSOURCE:McKinseyDISRUPTIVETECHNOLOGIESNewformsofhumanmachineinteractioncanfurther
optimizeproductionprocessesSOURCE:Festo;Microsoft;UbimaxDescriptionPossibleIndustry4.0applicationExoskeletonsFestoExoHandExoskeletonemulatesphysiologyofhumanhandCansupportstrainingmanualmovements(wornasglove)andtransmithumanhandmovementstorobothandAccelerationofprocessesthatrequirestrainingmanualworkbyenablingworkerstodothemfasterandmoreoftenEnablingofremotehandlingofdangerousgoodsGesturerecognitionMicrosoftKinectInputdeviceforWindowsPCsenablesgesture,facial,andvoicerecognitionDocumentationofcomponentqualityflawsbypointingatanon-screen3-DrepresentationAugmentedrealityUbimaxappsonGoogleGlassApplicationsonGoogleGlassshowlocation-basedinstructionstoworkers(e.g.,directionswheretogo,howtocompleteatask)Moreefficientwarehouse/assembly/serviceprocessesVirtualtrainingofworkersRemoteassistancewithplantmaintenanceDISRUPTIVETECHNOLOGIES3Dprintingnowadaysnotonlypossibleforpolymers
andmetals,butalsoceramicsSOURCE:3,3DISRUPTIVETECHNOLOGIESCERAMICSEXAMPLESSignificanttechnologicaladvancesin3Dprintingalreadyachievedwithinthelast25yearsSOURCE:WohlersReport;McKinseyResearch;McKinsey1Overallcostsincludingenergyandfacilities,maintenance,labor,machine,andmaterials 2ExemplarycalculationforDMLStechnology 3BasedonSLSSinterstation2000for1990and3DSsPro230HSfor2014;however,highdependenceonexactpartthatisbeingprinted41988and2012datapointsforIndustrialAMprintersMaterialsTypeMaximumsize3m3Laserpower3WattSoldindustrialprinters4Numberp.a.Manufacturersof3Dprinters4Number3Dprinting1EURperpart2Maximumspeed3cm3perhr1990sToday(2014)Polymers
andmetalsAdditionally,glass,biocells,sugar,cement~0.03~0.23~50~200~30~9,800<5~40~12.0~5.0~1,600~4,900>+1,000%+300%>+1,000%>+1,000%-60%+200%DISRUPTIVETECHNOLOGIESFirstHRCapplicationshavebeensuccessfully
introducedatautomotiveOEMsSOURCE:McKinsey,companyhomepageAudi,Ingolstadt1
Pickingandhandoverofcoolantexpansionreservoirfromlarge-loadcarrierAssemblyandinstallationcoolantexpansionreservoirbyoperator(handlingofodd-shapedpartsstillrequired)ImprovedergonomicsandreducedlevelsofworkerfatigueApplicationhassuccessfullygonethroughcertificationfromtheOEMsliabilityinsuranceRobotsupportsoperatorindoorassemblylineRobothandlespositioningandpressingofdoorsealswhichrequiresprecision,highforceandconstantpressureUpto70%offloorspacesavingsiminassembly-nearareasbyavoidingperiphericsafetyshieldsandbarriersBMW,Spartanburg21Finalassembly,AudiIngolstadtplant2Doorassemblyline,BMW,SpartanburgplantDISRUPTIVETECHNOLOGIESPaceofchangewillbeslowercomparedtotheconsumerInternetduetolargedownsiderisksincaseoffailure…SOURCE:Pressclippings1http:///companystory/downtime-costs-auto-industry-22k-minute-survey-4810172
http://www.vdi.de/artikel/gute-perspektiven-fuer-standort-deutschland-durch-industrie-40;onlytheofficiallyreportedcases–realdamageisexpectedtobebigger3http:///2014/12/31/business/a-year-of-record-recalls-galvanizes-auto-industry-into-action.html?_r=2CybersecurityriskEUR50bnAnnualdamage
totheGermanmanufacturingindustrycaused
bycyberattacks2Numberofcarsthatwererecalledin2014throughouttheUS3
60mQualitylossriskCostsintheautomotiveindustryperday1–weighrisksofintroductionofnewtechnologyagainstprocessreliabilityProductiondowntimeriskEUR28mDISRUPTIVETECHNOLOGIES<1,89,56,0<12,015,0…andduetosignificantlylongerinvestmentcyclesAverageusageperioduntilreplacement,yearsSOURCE:ReconAnalytics;Siemens;USInternalRevenueServiceManufacturingequipmentSteelAutomotiveChemicalsElectronicsSmartphoneDISRUPTIVETECHNOLOGIESIndustry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessOPERATIONALEFFECTIVENESSSOURCE:McKinseyTransformintoadigitalcompanyAdaptbusinessmodelstocaptureshiftingvalue
poolsReachnext
horizonofoperationaleffectivenessDisruptive
technologiesFromabaseof30,000datatags,closetozerotagsareusedtoinformoperationaldecisionsInacaseexample,99%ofalldatafromanoilrigwaslostbeforereachingoperationaldecisionmakers~30,000tagsmeasuredCommentPeopleandprocessesSchedulepredominantlybasedonOEM-recommendedmaintenanceintervalsDatamanagementDatacannotbeaccessedinrealtime,enablingonlyadhocanalysisInfrastructureOnly~1%canbestreamedonshorefordaytodayuseData
capture~40%ofalldataisneverstored–remainderisstoredlocallyoffshoreDeploymentNointerfaceinplacetoenablerealtimeanalyticsto"reach"offshoreAnalyticsReportinglimitedtoafewKPIswhicharemonitoredinretrospect0%~1%60%100%<1%<1%SOURCE:McKinseyOPERATIONALEFFECTIVENESSILLUSTRATIVESOURCE:McKinseyBeforeIndustry4.0OPERATIONALEFFECTIVENESSManualcheckingofbearing;replaceevery30daysregardlessofconditionWiredcommunicationwithcontrolcenterExactyieldpercoilunknownIdentifieddefectcreatedbyPaperMachineincardboardhastobescrapedIndividualcontrolroomforspecificmachine;novisibilitytoup/downstreamprocessesExcessiveWIP;notrackingsystemmakesiteasierforcoilstogetlostSignificantexcesslabormanagingunoptimizedflowpathandhardtolocateinventoryUnoptimizedpreventivemaintenanceschedulewithallpartschangedonsettimesILLUSTRATIVEBeforeIndustry4.0SOURCE:McKinseyOPERATIONALEFFECTIVENESSAfterIndustry4.0transformationSOURCE:McKinseyILLUSTRATIVEOPERATIONALEFFECTIVENESSAGVsimproveslaborefficiencyandprocessingtimeformaterialhandlingReducemachinedowntimeControlsmanymachinesMonitorsqualityandcomponentperformanceinadditiontothroughputUsesadvancedanalyticstoupdateparametersinrealtimetoimprovequalityandyieldPiezoElectricSensormeasuringvibrationonbearing;onlyreplacedifconditionrequiresImproveyieldImprovequalityIncreaselaborefficiencyCommonoperatingpictureBatchmatchingtodemandPreventiveMaintenanceSpectrometerQualityissuesidentifiedinrealtimewithdatarelayedtocontrolroomforadvancedanalyticsandparameteradjustmentYieldinputandoutputdatarelayedtocontrolroomforadvancedanalyticsandparameteradjustmentRFIDtagsoncoilsallowpreciselocationandtriggerautomaticKanbanwhenstockisdepletedWirelesscommunicationwithcontrolcenterOptimizedpreventivemaintenanceschedulebasedonrealtimecomponentmonitoringDigitizeperformancemanagementthroughrealtimedataandalarmsCommonoperatingpictureIncreaselaborefficiencyAfterIndustry4.0transformationILLUSTRATIVESOURCE:McKinseyOPERATIONALEFFECTIVENESSSOURCE:I,Steuler-ab.de(picture)Real-timeprocessadaptation:Productivityincreasethroughlimekilnmid-zonetemperaturemonitoring/adjustmentbasedonsophisticateddataanalyticsSensing–sensorsinakiln’smid-zonemonitorlimemudtemperature,aleadingindicationofcalcinationDataaggregation&analysis–temperaturereadingsarecombinedtosimulatetheheatprofileofthekilnDecisionmaking&actuation-basedontheinferredheatprofile,theshapeandintensityoftheflamedrivingheatthroughthekilnisoptimizedPULP&PAPERINDUSTRYImpact: 6%fuelsavings
16%limethroughputincreaseOPERATIONALEFFECTIVENESSBoschusesSICK'sRFIDtechnologytoenableautonomoustransportsystemsSOURCE:SICKinsightmagazine,July2014;
McKinsey1Radio-frequencyidentification 2MethodtomanageproductionprocesscontrolStartingpointRFIDsystemintroducedImprovementsAlldataregardinggoodsflowscollectedmanuallybyfillingoutpapercardsandenteringinforma-tionintoITsystemApproachhighlyerror-proneandasynchronous–informationflowlaggingbehindphysicalgoodsflowGoodsandtransportcontainersallequippedwithRFID1
trans-pondersthatcanbetrackedinrealtimeviaRFIDkanban2
systemIndividualobjectscanbeunambiguouslyidentifiedWheneveraunitisremovedfromthewarehouse,theRFIDsystemautomaticallytransfersinformationtotheSAPsystemAssoonasminimuminventorylevelisreached,pullsignalistriggeredtorefillstockAvailabilityofdataenablesinteractionwithcustomersandsuppliersforend-to-endprocessoptimizationImpact"Theproductionprocessisimprovingallonitsown.Newdataleadstonewknowledge.Newknowledgeleadstoimprovementsinthesystem."(Boschprojectmanager)OPERATIONALEFFECTIVENESSCondition-basedmaintenance:Decisionsupportcentertomonitorandidentifyearlywarningsonrotatingequipmenton~200platforms100%0%EquipmentconditionEquip-
mentlife
EventsandminordamagePotentialFailure
damagethatneedsrepairOperationsrunningwithoutproblemsAlert,e.g.fromvibrationorbearingtemp.FunctionalFailureInputfromequipmentPredictiveanalyticsEngineeringanalysisReportandrecom-mendationsTool1Tool2Tool3PatternrecognitionTagsfromcurrentmachinerycanbeusedtotellanomaliesPatternrecognitionisdoneagnostictovendorAnalytictoolsareusedtoidentifyrootcausestoanomaliesRecommen-dationsIncreasedmaintenanceplanningandrepairtimeMachinerytags(speed,current,etc.)VibrationsensorsSOURCE:McKinseyOPERATIONALEFFECTIVENESSEnablesworkers
tolocateproductsfasterandmoreprecisely,scansproductsautomaticallyGivesworkersexactinstructionshowandwheretostackproductsforpalletbuildingoptimizationKnapp'sKiSoftVisionguideswarehouseworkerswithvisualpromptsHelpsworkersoptimizecubestackingandensuresecurelocationsforfragileitemsSOURCE:;McKinseyKnappAGhasdevelopedaugmentedrealityglasses
toincreasetheefficiencyofwarehouseworkersOPERATIONALEFFECTIVENESSThewarehouseof2020willbehighlyautomatedSwarmAGVrobotsprovidingefficientgoods-to-manFlexiblemanagementofnumberofshelfsRandomlocationstrategyAdvancedsortingsystemwithopticalrecognitionofproductsPickingrobotforsingleitempickingAssistedmanualpickingsystem,e.g.man-to-goodsviaSwarmAGVs,smartglasses,…AGVconnectingconveyorbeltwithpickingareaHighspeed,highcapacitymulti-shuttlesystemShuttleabletoleaverackandoperateasAGVWMSautonomouslymanageinventory,real-timeconnectiontoorderingsystemAnalyticstoolsincreasingperformanceOPERATIONALEFFECTIVENESSSOURCE:McKinseyAmazonDistributioncenterPostalhub(e.g.DHL)CustomerAddressinformationOrderDeliver‘untagged’tohubFilloutpartialstreetaddressesorzipcodestogetitemsclosertowherecustomersneedthem,andlatercompletethelabelintransitAmazonplanstoshipbasedonpreviousorders/otherfactors.ParcelswaitathubsorontrucksuntilanorderarrivesAmazonmightsuggestitemsalreadyintransittocustomersusingitswebsitetoensuretheyaredeliveredAmazon’salgorithmsmightcauseerrors,promptingcostlyreturns.Tominimizethosecosts,Amazonsaiditmightconsidergivingcustomersdiscounts,orconverttheunwanteddeliveryintoafreegiftPredictiveShippingPatentShopping-cartcontentsReturnsTimeofcursorhoveringPreviousordersProductsearchesWishlistsSourcesofPredictionsTendertocommoncarrieratfulfillmentcenterSOURCE:McKinseyCustomerExperiencePractice,A,BBC,WSJCan’tweleveragetheinformationtoshipBEFOREthe
customerhasordered?Amazon's“predictiveshipping”doesitOPERATIONALEFFECTIVENESSIndustry4.0disruptstheindustrialvaluechainandrequirescompaniestorethinktheirwayofdoingbusinessSOURCE:McKinseyNEWBUSINESSMODELSDisruptive
technologiesTransformintoadigitalcompanyReachnext
horizonofoperationaleffectivenessAdaptbusinessmodelstocaptureshiftingvalue
poolsThereare4maintrendsregardingnewbusinessmodelsthatexploitopportunitiesSOURCE:McKinsey1 Intellectualpropertyrights
PlatformsProvisioningofTechnologyplatforms:ecosystemsfordevelopersbasedonopensystemsBrokerplatforms:industrialspotmarketsthatconnectthirdparties(e.g.,forexcessproductioncapacity)Data-drivenbusinessmodelsUsageof(crowd-sourced)dataforDirectmonetizationofcollecteddatainsteadofprimaryproduct(e.g.,Google)Indirectmonetizationofinsightsfromcollecteddata
(e.g.,micro-segmentationforpricingorcustomization)Pay-by-usage/subscription-basedmodels
formachineryNewpaymentmodelstransformCapex
intoOpexformanufacturersPerpetuationofrevenuestreamsinsteadofone-offassetsaleforsuppliersAs-a-servicebusinessmodelsIPR1-basedbusinessmodelsIPR-basedservicesRecurringrevenuemodels(e.g.,licensingfeesfordatastandards)Add-onservicesforprimaryproducts(e.g.,consultingonbestusageofproducts)NEWBUSINESSMODELSExampleJohnDeere:frommanufacturingtractorstoofferingsophisticatedonlineservicesforfarmersJohnDeere:theymaketractors,right?NowusesensorsaddedtotheirlatestequipmenttohelpfarmersmanagetheirfleetandtodecreasedowntimeoftheirtractorsaswellassaveonfuelTheinformationiscombinedwithhistoricalandreal-timedataregardingweatherprediction,soilconditions,cropfeaturesandmanyotherdatasetsTheinformationispresentedintheMyJohnDplatformaswellasontheiPadandiPhoneappMobileFarmManagerinordertohelperfarmersfigureoutwhichcropstoplantwhereandwhen,whenandwheretoplough,wherethebestreturnwillbemadewiththecropsandevenwhichpathtofollowwhenploughingSOURCE:JohnDeerestatements;DataFloqNEWBUSINESSMODELS–IPR-BASEDBUSINESSMODELSSOURCE:Rolls-Royceannualreports;Rolls-R;McKinseyRolls-Royceoffersfullafter-salesservice
modelbasedonpredictivemaintenanceNEWBUSINESSMODELS–PAYBYUSAGERatherthansellingturbinestocustomers,Rolls-Roycenowrentsthemoutona"timeonwing"basisaspartoftheirTotalCareofferingBefore:servicerepairsduringenginedowntimemeantrevenuesforOEMNow:
OEMtoensureengineavailability,customerspayforuptimeonly–allrisksassociatedwithengineaftercarestaywithOEMHow:newbusinessmodelenabledbyadvancedbigdatacapabilitiessinceRolls-Roycecanaccuratelypredictenginefailuresseveraldaysbeforetheyoccur(predictivemaintenance)Result:
improvedsafety,improvedcustomerservice,andlowerservicecostsImpactRolls-RoyceexpectstheshareofLTSAs1,includingTotalCare,torisefrom73%oftheirinstalledfleetin2012toover90%overthenextdecade1 LongTermServiceAgreementDetails–SCIO,acrowd-sourcedapproach
tospectroscopySOURCE:McKinseyNEWBUSINESSMODELS–DATADRIVENTypicalspectrometerScientificapplication–mainlyusedinphysicsandchemistryapplicationsIsoftenthesizeofalaptopTypicallypricedatUSD10,000andaboveConsumerapplication–afterscanninganobject,theuserre
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 通信網(wǎng)絡(luò)管理員風(fēng)險(xiǎn)評(píng)估與管理水平考核試卷含答案
- 群眾文化指導(dǎo)員安全實(shí)操考核試卷含答案
- 隨鉆測(cè)量工崗前安全生產(chǎn)規(guī)范考核試卷含答案
- 飛機(jī)外勤彈射救生工崗前技術(shù)實(shí)操考核試卷含答案
- 煙花爆竹工崗前工作改進(jìn)考核試卷含答案
- 玻璃鋼模具工安全規(guī)程評(píng)優(yōu)考核試卷含答案
- 平板顯示膜涂布工安全檢查考核試卷含答案
- 運(yùn)礦排土工安全防護(hù)模擬考核試卷含答案
- 2024年河西學(xué)院輔導(dǎo)員考試筆試題庫(kù)附答案
- 2024年濮陽(yáng)科技職業(yè)學(xué)院輔導(dǎo)員招聘考試真題匯編附答案
- 人教版信息科技五年級(jí)全一冊(cè) 第26課 尋找最短的路徑 課件
- 人民軍隊(duì)性質(zhì)宗旨教育
- 護(hù)士長(zhǎng)管理培訓(xùn)課件
- 初三期末藏文試卷及答案
- 暫緩行政拘留申請(qǐng)書(shū)
- 小學(xué)班主任經(jīng)驗(yàn)交流課件
- TSG 21-2015《固定式壓力容器安全技術(shù)監(jiān)察規(guī)程》
- 2025個(gè)人年終工作總結(jié)
- 中國(guó)水利教育培訓(xùn)手冊(cè)
- 小學(xué)數(shù)學(xué)元角分應(yīng)用題200道及答案
- 主播合同糾紛答辯狀
評(píng)論
0/150
提交評(píng)論