上海市虹口中學2024-2025學年下學期高三數(shù)學試題第一次質(zhì)量檢測試題考試試卷含解析_第1頁
上海市虹口中學2024-2025學年下學期高三數(shù)學試題第一次質(zhì)量檢測試題考試試卷含解析_第2頁
上海市虹口中學2024-2025學年下學期高三數(shù)學試題第一次質(zhì)量檢測試題考試試卷含解析_第3頁
上海市虹口中學2024-2025學年下學期高三數(shù)學試題第一次質(zhì)量檢測試題考試試卷含解析_第4頁
上海市虹口中學2024-2025學年下學期高三數(shù)學試題第一次質(zhì)量檢測試題考試試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海市虹口中學2024-2025學年下學期高三數(shù)學試題第一次質(zhì)量檢測試題考試試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若實數(shù)x,y滿足條件,目標函數(shù),則z的最大值為()A. B.1 C.2 D.02.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠地點離地面的距離為()A. B.C. D.3.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數(shù)學家和物理學家,他和高斯、牛頓并列被稱為世界三大數(shù)學家.據(jù)說,他自己覺得最為滿意的一個數(shù)學發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結(jié)論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.4.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.5.已知,,,,則()A. B. C. D.6.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.7.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側(cè)棱長為,則它的外接球的表面積為()A. B. C. D.8.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或19.已知函數(shù)(e為自然對數(shù)底數(shù)),若關于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為()A. B. C. D.10.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.11.下圖為一個正四面體的側(cè)面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.12.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù).若在區(qū)間上恒成立.則實數(shù)的取值范圍是__________.14.已知函數(shù)在上僅有2個零點,設,則在區(qū)間上的取值范圍為_______.15.已知一組數(shù)據(jù),1,0,,的方差為10,則________16.(5分)已知函數(shù),則不等式的解集為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.18.(12分)為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結(jié)果”有關?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學期望.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)2019年9月26日,攜程網(wǎng)發(fā)布《2019國慶假期旅游出行趨勢預測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規(guī)定:若公司某位導游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導游為優(yōu)秀導游.經(jīng)驗表明,如果公司的優(yōu)秀導游率越高,則該公司的影響度越高.已知甲、乙家旅游公司各有導游40名,統(tǒng)計他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:分組頻數(shù)(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?(2)從甲、乙兩家公司旅游總收人在(單位:萬元)的導游中,隨機抽取3人進行業(yè)務培訓,設來自甲公司的人數(shù)為,求的分布列及數(shù)學期望.20.(12分)甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.(1)求的分布列及數(shù)學期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數(shù)的取值范圍.21.(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調(diào)整眼及頭部的血液循環(huán),調(diào)節(jié)肌肉,改善眼的疲勞,達到預防近視等眼部疾病的目的.某學校為了調(diào)查推廣眼保健操對改善學生視力的效果,在應屆高三的全體800名學生中隨機抽取了100名學生進行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以上的人數(shù);(2)為了研究學生的視力與眼保健操是否有關系,對年級不做眼保健操和堅持做眼保健操的學生進行了調(diào)查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關系?(3)在(2)中調(diào)查的100名學生中,按照分層抽樣在不近視的學生中抽取8人,進一步調(diào)查他們良好的護眼習慣,在這8人中任取2人,記堅持做眼保健操的學生人數(shù)為X,求X的分布列和數(shù)學期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87922.(10分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

畫出可行域和目標函數(shù),根據(jù)平移得到最大值.【詳解】若實數(shù)x,y滿足條件,目標函數(shù)如圖:當時函數(shù)取最大值為故答案選C求線性目標函數(shù)的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最?。划敃r,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.2.A【解析】

由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設衛(wèi)星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關鍵,屬于中檔題.3.C【解析】

設球的半徑為R,根據(jù)組合體的關系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C本題主要考查組合體的表面積和體積,還考查了對數(shù)學史了解,屬于基礎題.4.C【解析】

利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.5.D【解析】

令,求,利用導數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設,利用導數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導,,故單調(diào)遞增:∴,當,設,,又,,即,故.故選:D本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導數(shù)判斷式子的大小,屬于中檔題.6.B【解析】

根據(jù),可知命題的真假,然后對取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.7.C【解析】

如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.8.D【解析】

求得直線的斜率,利用曲線的導數(shù),求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎題.9.A【解析】

若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設,∴,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,∴,當時,,當,,函數(shù)恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,∴且,即,且∴,故實數(shù)m的最大值為,故選:A本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學運算能力.10.C【解析】

根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應用,注意函數(shù)奇偶性的應用,屬于基礎題.11.C【解析】

將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應用,屬于中檔題.12.A【解析】

畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區(qū)間上恒成立,解得即故答案為:本題考查一元二次不等式及函數(shù)的綜合問題,屬于基礎題.14.【解析】

先根據(jù)零點個數(shù)求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.本題考查三角函數(shù)圖象與性質(zhì)的綜合,其中涉及到換元法求解三角函數(shù)值域的問題,難度較難.對形如的函數(shù)的值域求解,關鍵是采用換元法令,然后根據(jù),將問題轉(zhuǎn)化為關于的函數(shù)的值域,同時要注意新元的范圍.15.7或【解析】

依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.本題主要考查方差公式的應用.16.【解析】

易知函數(shù)的定義域為,且,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)60%;(2)(i)0.12(ii)【解析】

(1)利用上線人數(shù)除以總?cè)藬?shù)求解;(2)(i)利用二項分布求解;(ii)甲、乙兩市上線人數(shù)分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計本科上線率為.(2)(i)記“恰有8名學生達到本科線”為事件A,由圖可知,甲市每個考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數(shù)分別記為X,Y,依題意,可得,.因為2020屆高考本科上線人數(shù)乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.本題考查二項分布的綜合應用,考查計算求解能力,注意二項分布與超幾何分布是易混淆的知識點.18.(Ⅰ)填表見解析,有95%以上的把握認為“性別”與“問卷結(jié)果”有關;(Ⅱ)分布列見解析,【解析】

(Ⅰ)根據(jù)莖葉圖填寫列聯(lián)表,計算得到答案.(Ⅱ),計算,,,得到分布列,再計算數(shù)學期望得到答案.【詳解】(Ⅰ)根據(jù)莖葉圖可得:男女總計合格101626不合格10414總計202040,故有95%以上的把握認為“性別”與“問卷結(jié)果””有關.(Ⅱ)從莖葉圖可知,成績在60分以下(不含60分)的男女學生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,,,,012.本題考查了獨立性檢驗,分布列,數(shù)學期望,意在考查學生的綜合應用能力.19.(1),乙公司影響度高;(2)見解析,【解析】

(1)利用各小矩形的面積和等于1可得a,由導游人數(shù)為40人可得b,再由總收人不低于40可計算出優(yōu)秀率;(2)易得總收入在中甲公司有4人,乙公司有2人,則甲公司的人數(shù)的值可能為1,2,3,再計算出相應取值的概率即可.【詳解】(1)由直方圖知,,解得,由頻數(shù)分布表中知:,解得.所以,甲公司的導游優(yōu)秀率為:,乙公司的導游優(yōu)秀率為:,由于,所以乙公司影響度高.(2)甲公司旅游總收入在中的有人,乙公司旅游總收入在中的有2人,故的可能取值為1,2,3,易知:,;.所以的分布列為:123P.本題考查頻率分布直方圖、隨機變量的分布列與期望,考查學生數(shù)據(jù)處理與數(shù)學運算的能力,是一道中檔題.20.(1),ξ的分布列為ξ

0

1

2

3

P

(1-a)2

(1-a2)

(2a-a2)

(2)【解析】(1)P(ξ)是“ξ個人命中,3-ξ個人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ

0

1

2

3

P

(1-a)2

(1-a2)

(2a-a2)

ξ的數(shù)學期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.21.(1)(2)能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系(3)詳見解析【解析】

(1)由題意可計算后三組的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論