版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025年湖北省鄖陽中學高三高考線上模擬測試數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某高中高三(1)班為了沖刺高考,營造良好的學習氛圍,向班內(nèi)同學征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進行了問話,得到回復如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李2.已知函數(shù),且關于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍().A. B. C. D.3.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁4.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.5.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.6.已知,,,若,則()A. B. C. D.7.如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環(huán)比持平B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格8.《九章算術》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.9.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或010.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.11.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或12.復數(shù)的共軛復數(shù)在復平面內(nèi)所對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.14.已知,則__________.15.在的展開式中,的系數(shù)為______用數(shù)字作答16.已知向量滿足,,則______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于、兩點,且.(1)求拋物線的方程;(2)設為拋物線上任意一點(異于頂點),過做傾斜角互補的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補.18.(12分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.19.(12分)已知函數(shù),當時,有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調區(qū)間.20.(12分)已知函數(shù)(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.21.(12分)設函數(shù).(1)當時,解不等式;(2)設,且當時,不等式有解,求實數(shù)的取值范圍.22.(10分)選修4-5:不等式選講設函數(shù)f(x)=|x-a|,a<0.(1)證明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)題意,分別假設一個正確,推理出與假設不矛盾,即可得出結論.【詳解】解:由題意知,若只有小王的說法正確,則小王對應“入班即靜”,而否定小董說法后得出:小王對應“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應“天道酬勤”,否定小李的說法后得出:小李對應“細節(jié)決定成敗”,所以剩下小王對應“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應“天道酬勤”,所以得出“細節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.本題考查推理證明的實際應用.2.B【解析】
根據(jù)條件可知方程有且只有一個實根等價于函數(shù)的圖象與直線只有一個交點,作出圖象,數(shù)形結合即可.【詳解】解:因為條件等價于函數(shù)的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.本題主要考查函數(shù)圖象與方程零點之間的關系,數(shù)形結合是關鍵,屬于基礎題.3.C【解析】
分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.4.C【解析】
根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.5.D【解析】
由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D本題考查幾何概型的面積公式的應用,屬于基礎題.6.B【解析】
由平行求出參數(shù),再由數(shù)量積的坐標運算計算.【詳解】由,得,則,,,所以.故選:B.本題考查向量平行的坐標表示,考查數(shù)量積的坐標運算,掌握向量數(shù)量積的坐標運算是解題關鍵.7.D【解析】
先對圖表數(shù)據(jù)的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.8.B【解析】
利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應用,體現(xiàn)了數(shù)學運算、直觀想象等核心素養(yǎng).9.C【解析】
求出函數(shù)的導函數(shù),當時,只需,即,令,利用導數(shù)求其單調區(qū)間,即可求出參數(shù)的值,當時,根據(jù)函數(shù)的單調性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當時,由得,則在上單調遞減,在上單調遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調遞增.∵,∴;當時,,函數(shù)在上單調遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C本題考查利用導數(shù)研究函數(shù)的零點問題,零點存在性定理的應用,屬于中檔題.10.B【解析】
雙曲線的漸近線方程為,由題可知.設點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.11.A【解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A本小題主要考查直線和圓的位置關系,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.12.D【解析】
由復數(shù)除法運算求出,再寫出其共軛復數(shù),得共軛復數(shù)對應點的坐標.得結論.【詳解】,,對應點為,在第四象限.故選:D.本題考查復數(shù)的除法運算,考查共軛復數(shù)的概念,考查復數(shù)的幾何意義.掌握復數(shù)的運算法則是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:根據(jù)題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率14.【解析】解:由題意可知:.15.1【解析】
利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.16.1【解析】
首先根據(jù)向量的數(shù)量積的運算律求出,再根據(jù)計算可得;【詳解】解:因為,所以又所以所以故答案為:本題考查平面向量的數(shù)量積的運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】
(1)根據(jù)題意,設直線方程為,聯(lián)立方程,根據(jù)拋物線的定義即可得到結論;(2)根據(jù)題意,設的方程為,聯(lián)立方程得,同理可得,進而得到,再利用點差法得直線的斜率,利用切線與導數(shù)的關系得直線的斜率,進而可得與互補.【詳解】(1)由題意設直線的方程為,令、,聯(lián)立,得,根據(jù)拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設,,設的方程為,與聯(lián)立消去得,,同理,直線的斜率=切線的斜率,由,即與互補.本題考查直線與拋物線的位置關系的綜合應用,直線斜率的應用,考查分析問題解決問題的能力,屬于中檔題.18.(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)把點代入橢圓方程,結合離心率得到關于的方程,解方程即可;(Ⅱ)聯(lián)立直線與橢圓方程得到關于的一元二次方程,利用韋達定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達定理可得,,設的中點為,得,即,,的中垂線方程為,即,故得中垂線恒過點.本題考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系及橢圓中的定值問題;考查運算求解能力和知識的綜合運用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關鍵;屬于中檔題.19.(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】
(1)由題意得到關于實數(shù)的方程組,求解方程組,即可求得的值;(2)結合(1)中的值得出函數(shù)的解析式,即可利用導數(shù)求得函數(shù)的單調區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當時,有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調減區(qū)間為,遞增區(qū)間為,當時,函數(shù)取得極小值,極小值為.當時,有極大值3.本題主要考查了函數(shù)的極值的概念,以及利用導數(shù)求解函數(shù)的單調區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導數(shù)與原函數(shù)的關系,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20.(1);(2)【解析】
(1)當時,由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當時,由,可得,令,則只需,當時,;當時,;當時,;故當時,取得最小值,即的最大值為.(2)依題意,當時,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實數(shù)的取值范圍是.本題主要考查了含絕對值的不等式的解法,以及不等式的恒成立問題的求解與應用,著重考查了轉化思想,以及推理與計算能力.21.(1);(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 昆山鈔票紙業(yè)有限公司2026年度招聘備考題庫附答案詳解
- 2025年四川大學華西樂城醫(yī)院招聘18人備考題庫有答案詳解
- 2025年哈爾濱市天元學校招聘臨聘教師備考題庫及答案詳解參考
- 2025年蒙晟建設有限公司公開招聘緊缺專業(yè)人員的備考題庫及完整答案詳解1套
- 2025年四川省筠連縣公證處公開招聘公證員2人備考題庫及一套參考答案詳解
- 功能性腹脹中醫(yī)診療專家共識總結2026
- 漸變風年會慶典晚會表彰
- 《植物工廠多層立體栽培模式光環(huán)境調控與植物生長周期調控研究》教學研究課題報告
- 2025年張家港市第三人民醫(yī)院自主招聘編外合同制衛(wèi)技人員備考題庫附答案詳解
- 2025年浙江省中醫(yī)院、浙江中醫(yī)藥大學附屬第一醫(yī)院(第一臨床醫(yī)學院)公開招聘人員備考題庫及一套完整答案詳解
- 2025年國家開放大學管理英語3作業(yè)答案
- 乳腺癌全程、全方位管理乳腺癌患者依從性及心理健康管理幻燈
- 四川省高職單招汽車類《汽車機械基礎》復習備考試題庫(含答案)
- 2024CSCO腫瘤患者靜脈血栓防治指南解讀
- MOOC 中國文化概論-華南師范大學 中國大學慕課答案
- 博物館保安服務投標方案(技術方案)
- 浙人美版美術五年級上冊期末復習資料整理
- 年產(chǎn)20萬噸氯乙烯工藝設計
- GB/T 42737-2023電化學儲能電站調試規(guī)程
- 人民網(wǎng)輿情監(jiān)測室發(fā)布2023年互聯(lián)網(wǎng)輿情分析報告
- 博士論文的寫作
評論
0/150
提交評論