版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省濟寧市魚臺縣第一中學2025屆高一上數(shù)學期末教學質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.方程的實數(shù)根所在的區(qū)間是()A. B.C. D.2.若函數(shù)的定義域是,則函數(shù)的定義域是()A. B.C. D.3.若某商店將進貨單價為6元的商品按每件10元出售,則每天可銷售100件.現(xiàn)準備采用提高售價、減少進貨量的方法來增加利潤.已知這種商品的售價每提高1元,銷售量就要減少10件,那么要保證該商品每天的利潤在450元以上,售價的取值范圍是()A. B.C. D.4.函數(shù)在區(qū)間上的最大值為A.1 B.4C.-1 D.不存在5.下列圖象是函數(shù)圖象的是A. B.C. D.6.已知a,b,,那么下列命題中正確的是()A.若,則 B.若,則C.若,且,則 D.若,且,則7.已知全集,集合,集合,則A. B.C. D.8.設集合,,則集合=()A B.C. D.9.將函數(shù)y=2sin(2x+)的圖象向左平移個最小正周期后,所得圖象對應的函數(shù)為()A. B.C. D.10.玉溪某車間分批生產(chǎn)某種產(chǎn)品,每批的生產(chǎn)準備費用為800元,若每批生產(chǎn)件,則平均倉儲時間為天,且每件產(chǎn)品每天的倉儲費用為1元,為使平均到每件產(chǎn)品的生產(chǎn)準備費用與倉儲費用之和最小,每批應生產(chǎn)產(chǎn)品A.60件 B.80件C.100件 D.120件二、填空題:本大題共6小題,每小題5分,共30分。11.已知冪函數(shù)經(jīng)過點,則______12.已知函數(shù),若是的最大值,則實數(shù)t的取值范圍是______13.已知,且的終邊上一點P的坐標為,則=______14.函數(shù)的定義域為______.15.已知,則__________.16.已知且,則=______________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知角的頂點與原點重合,始邊與軸的非負半軸重合,它的終邊在直線上.(1)求的值;(2)求值18.在①函數(shù);②函數(shù);③函數(shù)的圖象向右平移個單位長度得到的圖象,的圖象關(guān)于原點對稱;這三個條件中任選一個作為已知條件,補充在下面的問題中,然后解答補充完整的題已知______(只需填序號),函數(shù)的圖象相鄰兩條對稱軸之間的距離為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞減區(qū)間及其在上的最值注:若選擇多個條件分別解答,則按第一個解答計分.19.已知二次函數(shù).(1)若函數(shù)滿足,且.求的解析式;(2)若對任意,不等式恒成立,求的最大值.20.如圖所示,四棱錐中,底面為矩形,平面,,點為的中點()求證:平面()求證:平面平面21.如圖,正方體的棱長為1,CB′∩BC′=O,求:(1)AO與A′C′所成角的度數(shù);(2)AO與平面ABCD所成角的正切值;(3)證明平面AOB與平面AOC垂直.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】令,因為,且函數(shù)在定義域內(nèi)單調(diào)遞增,故方程的解所在的區(qū)間是,故選B.2、C【解析】由題可列出,可求出【詳解】的定義域是,在中,,解得,故的定義域為.故選:C.3、B【解析】根據(jù)題意列出函數(shù)關(guān)系式,建立不等式求解即可.【詳解】設售價為,利潤為,則,由題意,即,解得,即售價應定為元到元之間,故選:B.4、C【解析】根據(jù)題干知,可畫出函數(shù)圖像,是開口向下的以y軸為對稱軸的二次函數(shù),在上單調(diào)遞減,故最大值在1處取得得到-1.故答案為C5、D【解析】由題意結(jié)合函數(shù)的定義確定所給圖象是否是函數(shù)圖象即可.【詳解】由函數(shù)的定義可知,函數(shù)的每一個自變量對應唯一的函數(shù)值,選項A,B中,當時,一個自變量對應兩個函數(shù)值,不合題意,選項C中,當時,一個自變量對應兩個函數(shù)值,不合題意,只有選項D符合題意.本題選擇D選項.【點睛】本題主要考查函數(shù)的定義及其應用,屬于基礎題.6、A【解析】根據(jù)不等式的性質(zhì)判斷【詳解】若,顯然有,所以,A正確;若,當時,,B錯;若,則,當時,,,C錯;若,且,也滿足已知,此時,D錯;故選:A7、C【解析】先求出,再和求交集即可.【詳解】因全集,集合,所以,又,所以.故選C【點睛】本題主要考查集合的混合運算,熟記概念即可,屬于基礎題型.8、B【解析】先根據(jù)一元二次不等式和對數(shù)不等式的求解方法求得集合M、N,再由集合的交集運算可得選項【詳解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故選:B9、C【解析】求解函數(shù)y的最小正周期,根據(jù)三角函數(shù)的平移變換規(guī)律,即可求解.【詳解】函數(shù)y=2sin(2x+)其周期T=π,圖象向左平移個最小正周期后,可得y=2sin[2(x+)+]=2sin(2x++)=2cos(2x+)故選C.【點睛】本題考查了最小正周期的求法和函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題10、B【解析】確定生產(chǎn)件產(chǎn)品的生產(chǎn)準備費用與倉儲費用之和,可得平均每件的生產(chǎn)準備費用與倉儲費用之和,利用基本不等式,即可求得最值【詳解】解:根據(jù)題意,該生產(chǎn)件產(chǎn)品的生產(chǎn)準備費用與倉儲費用之和是這樣平均每件的生產(chǎn)準備費用與倉儲費用之和為(為正整數(shù))由基本不等式,得當且僅當,即時,取得最小值,時,每件產(chǎn)品的生產(chǎn)準備費用與倉儲費用之和最小故選:【點睛】本題考查函數(shù)的構(gòu)建,考查基本不等式的運用,屬于中檔題,運用基本不等式時應該注意取等號的條件,才能準確給出答案,屬于基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、##0.5【解析】將點代入函數(shù)解得,再計算得到答案.【詳解】,故,.故答案為:12、【解析】先求出時最大值為,再由是的最大值,解出t的范圍.【詳解】當時,,由對勾函數(shù)的性質(zhì)可得:在時取得最大值;當時,,且是的最大值,所以,解得:.故答案為:13、【解析】先求解,判斷的終邊在第四象限,計算,結(jié)合,即得解【詳解】由題意,故點,故終邊在第四象限且,又故故答案為:14、且【解析】由根式函數(shù)和分式函數(shù)的定義域求解.【詳解】由,解得且,所以函數(shù)的定義域為且故答案為:且15、3【解析】由同角三角函數(shù)商數(shù)關(guān)系及已知等式可得,應用誘導公式有,即可求值.【詳解】由題設,,可得,∴.故答案為:316、3【解析】先換元求得函數(shù),然后然后代入即可求解.【詳解】且,令,則,即,解得,故答案為:3.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)或;【解析】(1)在直線上任取一點,由已知角的終邊過點,利用誘導公式與三角函數(shù)定義即可求解,要注意分類討論m的正負.(2)先利用商的關(guān)系化簡原式為,結(jié)合第一問利用三角函數(shù)定義分別求得與,要注意分類討論m的正負.【詳解】(1)在直線上任取一點,由已知角的終邊過點,,,利用誘導公式與三角函數(shù)定義可得:,當時,;當時,(2)原式同理(1)利用三角函數(shù)定義可得:,當時,,,此時原式;當時,,,此時原式;【點睛】易錯點睛:本題考查三角函數(shù)化簡求值,解本題時要注意的事項:角的終邊在直線上,但未確定在象限,要分類討論,考查學生的轉(zhuǎn)化能力與運算解能力,屬于中檔題.18、(1)條件選擇見解析,(2)單調(diào)遞減區(qū)間為,最小值為,最大值為2【解析】(1)選條件①:利用同角三角函數(shù)的關(guān)系式以及兩角和的正弦公式和倍角公式,將化為只含一個三角函數(shù)形式,根據(jù)最小正周期求得,即可得答案;選條件②:利用兩角和的正弦公式以及倍角公式,將化為只含一個三角函數(shù)形式,根據(jù)最小正周期求得,即可得答案;選條件③,先求得,利用三角函數(shù)圖象的平移變換規(guī)律,可得到g(x)的表達式,根據(jù)其性質(zhì)求得,即得答案;(2)根據(jù)正弦函數(shù)的單調(diào)性即可求得答案,再由,確定,根據(jù)三角函數(shù)性質(zhì)即可求得答案.【小問1詳解】選條件①:法一:又由函數(shù)的圖象相鄰兩條對稱軸之間的距離為,可知函數(shù)最小正周期,∴,∴選條件②:,又最小正周期,∴,∴選條件③:由題意可知,最小正周期,∴,∴,∴,又函數(shù)的圖象關(guān)于原點對稱,∴,∵,∴∴【小問2詳解】由(1)知,由,解得,∴函數(shù)單調(diào)遞減區(qū)間為由,從而,故在區(qū)間上的最小值為,最大值為2.19、(1)(2)【解析】(1)利用待定系數(shù)的方法確定二次函數(shù)解析式(2)由二次不等式恒成立,轉(zhuǎn)化參數(shù)關(guān)系,代入通過討論特殊情況后配合基本不等式求出最值【小問1詳解】設,由已知代入,得,對于恒成立,故,解得,又由,得,所以;【小問2詳解】若對任意,不等式恒成立,???????整理得:恒成立,因為a不為0,所以,所以,所以,令,因為,所以,若時,此時,若時,,當時,即時,上式取得等號,???????綜上的最大值為.20、(1)證明見解析;(2)證明見解析.【解析】(1)連接交于,連接.利用幾何關(guān)系可證得,結(jié)合線面平行的判斷定理則有直線平面(2)利用線面垂直的定義有,結(jié)合可證得平面,則,由幾何關(guān)系有,則平面,利用面面垂直的判斷定理即可證得平面平面試題解析:()連接交于,連接因為矩形的對角線互相平分,所以在矩形中,是中點,所以在中,是中位線,所以,因為平面,平面,所以平面()因為平面,平面,所以;在矩形中有,又,所以平面,因為平面,所以;由已知,三角形是等腰直角三角形,是斜邊的中點,所以,因為,所以平面,因為平面,所以平面平面21、(1)30°(2)(3)見解析【解析】(1)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法求AO與A′C′所成角的度數(shù);(2)利用向量法求AO與平面ABCD所成角的正切值;(3)證明平面AOB與平面AOC的法向量垂直.【詳解】(1)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,A(1,0,0),O(),(1,0,1),C′(0,1,1),(,1,),(﹣1,1,0),設AO與A′C′所成角為θ,則cosθ,∴θ=30°,∴AO與A′C′所成角為30°.(2)∵(),面ABCD的法向量為(0,0,1),設AO與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 試用車輛協(xié)議書
- 工程防疫協(xié)議書
- 開發(fā)協(xié)議書范本
- 快速保險協(xié)議書
- 銷售模具合同范本
- 贈送廣告協(xié)議書
- 運輸處置協(xié)議書
- 裝修安排協(xié)議書
- 巷道使用協(xié)議書
- 直銷產(chǎn)品合同范本
- 貨物運輸安全管理制度
- 《電子工業(yè)全光網(wǎng)絡工程技術(shù)規(guī)范》
- 3 面粉碼垛機器人的結(jié)構(gòu)設計
- 腦梗塞所致精神障礙病人護理
- 護理組長競聘演講
- 露天煤礦安全用電培訓
- 股骨粗隆間骨折分型培訓課件
- 24年一年級上冊語文期末復習21天沖刺計劃(每日5道題)
- 靜療工作總結(jié)
- 2024-2025學年吉安市泰和縣六上數(shù)學期末綜合測試模擬試題含解析
- JJF 1064-2024坐標測量機校準規(guī)范
評論
0/150
提交評論