廣東省廣州市增城區(qū)四校2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第1頁
廣東省廣州市增城區(qū)四校2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第2頁
廣東省廣州市增城區(qū)四校2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第3頁
廣東省廣州市增城區(qū)四校2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第4頁
廣東省廣州市增城區(qū)四校2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省廣州市增城區(qū)四校2025屆數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進(jìn)部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時(shí)帶卯眼的木構(gòu)件的俯視圖可以是A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.3.已知向量,且,則等于()A.4 B.3 C.2 D.14.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點(diǎn)相同,則雙曲線漸近線方程為()A. B.C. D.5.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有6.已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為()A.-2 B.-1 C.1 D.27.設(shè)m,n為直線,、為平面,則的一個(gè)充分條件可以是()A.,, B.,C., D.,8.若的展開式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.19.點(diǎn)為棱長是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長度為()A. B. C. D.10.定義在上的函數(shù)滿足,則()A.-1 B.0 C.1 D.211.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.12.已知函數(shù)的圖象的一條對(duì)稱軸為,將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域?yàn)椋鋱D象如圖所示.函數(shù)是定義域?yàn)榈钠婧瘮?shù),滿足,且當(dāng)時(shí),.給出下列三個(gè)結(jié)論:①;②函數(shù)在內(nèi)有且僅有個(gè)零點(diǎn);③不等式的解集為.其中,正確結(jié)論的序號(hào)是________.14.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.15.已知實(shí)數(shù),滿足約束條件則的最大值為________.16.函數(shù)過定點(diǎn)________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角所對(duì)的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.18.(12分)已知直線:(為參數(shù)),曲線(為參數(shù)).(1)設(shè)與相交于,兩點(diǎn),求;(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線距離的最小值.19.(12分)如圖,在直角中,,通過以直線為軸順時(shí)針旋轉(zhuǎn)得到().點(diǎn)為斜邊上一點(diǎn).點(diǎn)為線段上一點(diǎn),且.(1)證明:平面;(2)當(dāng)直線與平面所成的角取最大值時(shí),求二面角的正弦值.20.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的值域.(2)設(shè)函數(shù),若,且的最小值為,求實(shí)數(shù)的取值范圍.21.(12分)已知,均為給定的大于1的自然數(shù),設(shè)集合,.(Ⅰ)當(dāng),時(shí),用列舉法表示集合;(Ⅱ)當(dāng)時(shí),,且集合滿足下列條件:①對(duì)任意,;②.證明:(?。┤簦瑒t(集合為集合在集合中的補(bǔ)集);(ⅱ)為一個(gè)定值(不必求出此定值);(Ⅲ)設(shè),,,其中,,若,則.22.(10分)已知雙曲線及直線.(1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;(2)若l與C交于A,B兩點(diǎn),O是原點(diǎn),且,求實(shí)數(shù)k的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進(jìn)去的,即俯視圖中應(yīng)有一不可見的長方形,且俯視圖應(yīng)為對(duì)稱圖形故俯視圖為故選A.點(diǎn)睛:本題主要考查空間幾何體的三視圖,考查學(xué)生的空間想象能力,屬于基礎(chǔ)題。2、C【解析】

根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.3、D【解析】

由已知結(jié)合向量垂直的坐標(biāo)表示即可求解.【詳解】因?yàn)?,且,,則.故選:.【點(diǎn)睛】本題主要考查了向量垂直的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.4、A【解析】

由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點(diǎn)相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.【點(diǎn)睛】本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程的求法,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.5、C【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.6、B【解析】

求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域?yàn)椋ī?,+∞),因?yàn)閒′(x)a,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力.7、B【解析】

根據(jù)線面垂直的判斷方法對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),當(dāng),,時(shí),由于不在平面內(nèi),故無法得出.對(duì)于B選項(xiàng),由于,,所以.故B選項(xiàng)正確.對(duì)于C選項(xiàng),當(dāng),時(shí),可能含于平面,故無法得出.對(duì)于D選項(xiàng),當(dāng),時(shí),無法得出.綜上所述,的一個(gè)充分條件是“,”故選:B【點(diǎn)睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.8、B【解析】

由,進(jìn)而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.9、C【解析】

設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求出動(dòng)點(diǎn)的軌跡的長度.【詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長度為.故選:C【點(diǎn)睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.10、C【解析】

推導(dǎo)出,由此能求出的值.【詳解】∵定義在上的函數(shù)滿足,∴,故選C.【點(diǎn)睛】本題主要考查函數(shù)值的求法,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用,屬于中檔題.11、A【解析】

,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點(diǎn)睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問題,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.12、C【解析】

根據(jù)輔助角公式化簡三角函數(shù)式,結(jié)合為函數(shù)的一條對(duì)稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡可得,因?yàn)闉楹瘮?shù)圖象的一條對(duì)稱軸,代入可得,即,化簡可解得,即,所以將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長度可得,則,故選:C.【點(diǎn)睛】本題考查了輔助角化簡三角函數(shù)式的應(yīng)用,三角函數(shù)對(duì)稱軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、①③【解析】

利用奇函數(shù)和,得出函數(shù)的周期為,由圖可直接判斷①;利用賦值法求得,結(jié)合,進(jìn)而可判斷函數(shù)在內(nèi)的零點(diǎn)個(gè)數(shù),可判斷②的正誤;采用換元法,結(jié)合圖象即可得解,可判斷③的正誤.綜合可得出結(jié)論.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以,又,所以,即,所以,函數(shù)的周期為.對(duì)于①,由于函數(shù)是上的奇函數(shù),所以,,故①正確;對(duì)于②,,令,可得,得,所以,函數(shù)在區(qū)間上的零點(diǎn)為和.因?yàn)楹瘮?shù)的周期為,所以函數(shù)在內(nèi)有個(gè)零點(diǎn),分別是、、、、,故②錯(cuò)誤;對(duì)于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【點(diǎn)睛】本題考查函數(shù)的圖象與性質(zhì),涉及奇偶性、周期性和零點(diǎn)等知識(shí)點(diǎn),考查學(xué)生分析問題的能力和數(shù)形結(jié)合能力,屬于中等題.14、【解析】由分層抽樣的知識(shí)可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.15、1【解析】

作出約束條件表示的可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,轉(zhuǎn)化目標(biāo)函數(shù)為當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),直線的截距最大此時(shí)取得最大值1.故答案為:1【點(diǎn)睛】本題考查了線性規(guī)劃問題,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.16、【解析】

令,,與參數(shù)無關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無關(guān),所有過定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無關(guān),熟記常見函數(shù)的定點(diǎn)可以節(jié)省解題時(shí)間.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由可得到,代入,結(jié)合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結(jié)合正弦定理可得到,利用,,可得到,進(jìn)而可求出周長的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長為.∵,∴,∴,∴的周長的取值范圍為.【點(diǎn)睛】本題考查了正弦定理、余弦定理在解三角形中的運(yùn)用,考查了三角形的面積公式,考查了學(xué)生分析問題、解決問題的能力,屬于基礎(chǔ)題.18、(1);(2).【解析】

(1)將直線和曲線化為普通方程,聯(lián)立直線和曲線,可得交點(diǎn)坐標(biāo),可得的值;(2)可得曲線的參數(shù)方程,利用點(diǎn)到直線的距離公式結(jié)合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程.聯(lián)立方程組,解得與的交點(diǎn)為,,則.(2)曲線的參數(shù)方程為(為參數(shù)),故點(diǎn)的坐標(biāo)為,從而點(diǎn)到直線的距離是,由此當(dāng)時(shí),取得最小值,且最小值為.【點(diǎn)睛】本題主要考查參數(shù)方程與普通方程的轉(zhuǎn)化及參數(shù)方程的基本性質(zhì)、點(diǎn)到直線的距離公式等,屬于中檔題.19、(1)見解析;(2)【解析】

(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應(yīng)最小,可得為中點(diǎn),然后建系分別求出平面的法向量即可算得二面角的余弦值,進(jìn)一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標(biāo)原點(diǎn),以,,的方向?yàn)椋?,軸的正方向,建立空間直角坐標(biāo)系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時(shí),即,點(diǎn)為中點(diǎn).,,,,,,,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,同理,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.20、(1);(2).【解析】

(1)令,求出的范圍,再由指數(shù)函數(shù)的單調(diào)性,即可求出結(jié)論;(2)對(duì)分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關(guān)系,求出的值,進(jìn)而求出的取值關(guān)系.【詳解】(1)當(dāng)時(shí),,令,∵∴,而是增函數(shù),∴,∴函數(shù)的值域是.(2)當(dāng)時(shí),則在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,在上單調(diào)遞增,最小值為,而的最小值為,所以這種情況不可能.當(dāng)時(shí),則在上單調(diào)遞減且沒有最小值,在上單調(diào)遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查復(fù)合函數(shù)的值域與分段函數(shù)的最值,熟練掌握二次函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.21、(Ⅰ);(Ⅱ)(?。┰斠娊馕觯áⅲ┰斠娊馕?(Ⅲ)詳見解析.【解析】

(Ⅰ)當(dāng),時(shí),,,,,,.即可得出.(Ⅱ)(i)當(dāng)時(shí),,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設(shè),,,,其中,,,2,,.,可得,通過求和即可證明結(jié)論.【詳解】(Ⅰ)解:當(dāng),時(shí),,,,,..(Ⅱ)證明:(i)當(dāng)時(shí),,2,3,,,又,,,,,,必然有,否則,而,與已知對(duì)任意,矛盾.因此有.(ii)..,為定值.(iii)由設(shè),,,,其中,,,2,,.,..【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式求和公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論