哈爾濱市重點中學2025屆數(shù)學高一上期末考試模擬試題含解析_第1頁
哈爾濱市重點中學2025屆數(shù)學高一上期末考試模擬試題含解析_第2頁
哈爾濱市重點中學2025屆數(shù)學高一上期末考試模擬試題含解析_第3頁
哈爾濱市重點中學2025屆數(shù)學高一上期末考試模擬試題含解析_第4頁
哈爾濱市重點中學2025屆數(shù)學高一上期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

哈爾濱市重點中學2025屆數(shù)學高一上期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若冪函數(shù)f(x)=xa圖象過點(3,9),設(shè),,t=-loga3,則m,n,t的大小關(guān)系是()A. B.C. D.2.若,,則的值為()A. B.C. D.3.已知函數(shù),若方程有五個不同的實數(shù)根,則實數(shù)的取值范圍為()A. B.C. D.4.若定義域為R的函數(shù)滿足,且,,有,則的解集為()A. B.C. D.5.用二分法求方程的近似解時,可以取的一個區(qū)間是A. B.C. D.6.如圖,一根絕對剛性且長度不變、質(zhì)量可忽略不計線,一端固定,另一端懸掛一個沙漏讓沙漏在偏離平衡位置一定角度后在重力作用下在鉛垂面內(nèi)做周期擺動.設(shè)線長為,沙漏擺動時離開平衡位置的位移(單位:cm)與時間(單位:s)的函數(shù)關(guān)系是,.若,要使沙漏擺動的最小正周期是,則線長約為()A.5m B.C. D.20m7.數(shù)學家歐拉于1765年在他的著作《三角形的幾何學》中首次提出定理:三角形的外心(三邊中垂線的交點)、重心(三邊中線的交點)、垂心(三邊高的交點)依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知的頂點為,,,則該三角形的歐拉線方程為().注:重心坐標公式為橫坐標:;縱坐標:A. B.C. D.8.函數(shù)與g(x)=-x+a的圖象大致是A. B.C. D.9.已知,,則在方向上的投影為()A. B.C. D.10.某校早上6:30開始跑操,假設(shè)該校學生小張與小王在早上6:00~6:30之間到校,且每人在該時間段的任何時刻到校是等可能的,則小張與小王至少相差5分鐘到校的概率為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù),若其定義域內(nèi)不存在實數(shù),使得,則的取值范圍是______12.若,則__________13.設(shè)函數(shù)和函數(shù),若對任意都有使得,則實數(shù)a的取值范圍為______14.給出下列四種說法:(1)函數(shù)與函數(shù)的定義域相同;(2)函數(shù)與的值域相同;(3)若函數(shù)式定義在R上的偶函數(shù)且在為減函數(shù)對于銳角則;(4)若函數(shù)且,則;其中正確說法序號是________.15.已知,,則的最小值是___________.16.如圖,扇形的面積是,它的周長是,則弦的長為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.直線l經(jīng)過兩點(2,1)、(6,3).(1)求直線l的方程;(2)圓C的圓心在直線l上,并且與x軸相切于(2,0)點,求圓C的方程18.設(shè)函數(shù)(1)若不等式解集,求、的值;(2)若,在上恒成立,求實數(shù)的取值范圍19.已知函數(shù)在區(qū)間上有最大值,最小值,設(shè).(1)求值;(2)若不等式在時恒成立,求實數(shù)的取值范圍.20.設(shè)函數(shù)(1)若,求的值(2)求函數(shù)在R上的最小值;(3)若方程在上有四個不相等的實數(shù)根,求a的取值范圍21.已知角的頂點在坐標原點,始邊與軸的非負半軸重合,終邊經(jīng)過點.(1)求;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由冪函數(shù)的圖象過點(3,9)求出a的值,再比較m、n、t的大小【詳解】冪函數(shù)f(x)=xa圖象過點(3,9),∴3a=9,a=2;,∴m>n>t故選D【點睛】本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題2、D【解析】根據(jù)誘導公式即可直接求值.【詳解】因為,所以,又因為,所以,所以.故選:D.3、A【解析】由可得或,數(shù)形結(jié)合可方程只有解,則直線與曲線有個交點,結(jié)合圖象可得出實數(shù)的取值范圍.【詳解】由可得或,當時,;當時,.作出函數(shù)、、圖象如下圖所示:由圖可知,直線與曲線有個交點,即方程只有解,所以,方程有解,即直線與曲線有個交點,則.故選:A.4、A【解析】根據(jù)已知條件易得關(guān)于直線x=2對稱且在上遞減,再應(yīng)用單調(diào)性、對稱性求解不等式即可.【詳解】由題設(shè)知:關(guān)于直線x=2對稱且在上單調(diào)遞減由,得:,所以,解得故選:A5、A【解析】分析:根據(jù)零點存在定理進行判斷詳解:令,因為,,所以可以取的一個區(qū)間是,選A.點睛:零點存在定理的主要內(nèi)容為區(qū)間端點函數(shù)值異號,是判斷零點存在的主要依據(jù).6、A【解析】根據(jù)余弦函數(shù)的周期公式計算,即可求得答案.【詳解】因為函數(shù)最小正周期是,故,即,解得(m),故選:A7、D【解析】由重心坐標公式得重心的坐標,根據(jù)垂直平分線的性質(zhì)設(shè)出外心的坐標為,再由求出,然后求出歐拉線的斜率,點斜式就可求得其方程.【詳解】設(shè)的重點為,外心為,則由重心坐標公式得,并設(shè)的坐標為,解得,即歐拉方程為:,即:故選:D【點睛】本題考查直線方程,兩點之間的距離公式,三角形的重心、垂心、外心的性質(zhì),考查了理解辨析能力及運算能力.8、A【解析】因為直線是遞減,所以可以排除選項,又因為函數(shù)單調(diào)遞增時,,所以當時,,排除選項B,此時兩函數(shù)的圖象大致為選項,故選A.【方法點晴】本題通過對多個圖象的選擇考查函數(shù)的指數(shù)函數(shù)、一次函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意的選項一一排除.9、A【解析】利用向量數(shù)量積的幾何意義以及向量數(shù)量積的坐標表示即可求解.【詳解】,,在方向上的投影為:.故選:A【點睛】本題考查了向量數(shù)量積的幾何意義以及向量數(shù)量積的坐標表示,考查了基本運算求解能力,屬于基礎(chǔ)題.10、A【解析】設(shè)小張與小王的到校時間分別為6:00后第分鐘,第分鐘,由題意可畫出圖形,利用幾何概型中面積比即可求解.【詳解】設(shè)小張與小王的到校時間分別為6:00后第分鐘,第分鐘,可以看成平面中的點試驗的全部結(jié)果所構(gòu)成的區(qū)域為是一個正方形區(qū)域,對應(yīng)的面積,則小張與小王至少相差5分鐘到校事件(如陰影部分)則符合題意的區(qū)域,由幾何概型可知小張與小王至少相差5分鐘到校的概率為.故選:A【點睛】本題考查了幾何概率模型,解題的關(guān)鍵是畫出滿足條件的區(qū)域,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】按的取值范圍分類討論.【詳解】當時,定義域,,滿足要求;當時,定義域,取,,時,,不滿足要求;當時,定義域,,,滿足要求;當時,定義域,取,,時,,不滿足要求;綜上:故答案為:【點睛】關(guān)鍵點睛:由參數(shù)變化引起的分類討論,可根據(jù)題設(shè)按參數(shù)在不同區(qū)間,對應(yīng)函數(shù)的變化,找到參數(shù)的取值范圍.12、【解析】先求出的值,然后再運用對數(shù)的運算法則求解出和的值,最后求解答案.【詳解】若,則,所以.故答案為:【點睛】本題考查了對數(shù)的運算法則,熟練掌握對數(shù)的各運算法則是解題關(guān)鍵,并能靈活運用法則來解題,并且要計算正確,本題較為基礎(chǔ).13、【解析】先根據(jù)的單調(diào)性求出的值域A,分類討論求得的值域B,再將條件轉(zhuǎn)化為A,進行判斷求解即可【詳解】是上的遞減函數(shù),∴的值域為,令A(yù)=,令的值域為B,因為對任意都有使得,則有A,而,當a=0時,不滿足A;當a>0時,,∴解得;當a<0時,,∴不滿足條件A,綜上得.故答案為.【點睛】本題考查了函數(shù)的值域及單調(diào)性的應(yīng)用,關(guān)鍵是將條件轉(zhuǎn)化為兩個函數(shù)值域的關(guān)系,運用了分類討論的數(shù)學思想,屬于中檔題14、(1)(3)【解析】(1)根據(jù)定義域直接判斷;(2)分別求出值域即可判斷;(3)利用偶函數(shù)圖形的對稱性得出在上的單調(diào)性及銳角,可以判斷;(4)通過對數(shù)性質(zhì)及對數(shù)運算即可判斷.【詳解】(1)函數(shù)與函數(shù)的定義域都為.所以(1)正確.(2)函數(shù)的值域為而的值域為,所以值域不同,故(2)錯誤.(3)函數(shù)在定義R上的偶函數(shù)且在為減函數(shù),則函數(shù)在在為增函數(shù),又為銳角,則,所以,故(3)正確.(4)函數(shù)且,則,即,得,故(4)錯誤.故答案為:(1)(3).【點睛】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)的定義域與值域的求解,函數(shù)的奇偶性和單調(diào)性的判定,對數(shù)的運算,屬于函數(shù)知識的綜合應(yīng)用,是中檔題.15、【解析】化簡函數(shù),由,得到,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),因為,可得,當時,即時,函數(shù)取得最小值.故答案為:.16、【解析】由扇形弧長、面積公式列方程可得,再由平面幾何的知識即可得解.【詳解】設(shè)扇形的圓心角為,半徑為,則由題意,解得,則由垂徑定理可得.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)x-2y=0;(2)(x-2)2+(y-1)2=1【解析】(1)由直線過的兩點坐標求得直線斜率,在借助于點斜式方程可得到直線方程;(2)借助于圓的幾何性質(zhì)可知圓心在直線上,又圓心在直線上,從而可得到圓心坐標,圓心與的距離為半徑,進而可得到圓的方程試題解析:(1)由已知,直線的斜率,所以,直線的方程為.(2)因為圓的圓心在直線上,可設(shè)圓心坐標為,因圓與軸相切于點,所以圓心在直線上,所以,所以圓心坐標為,半徑為1,所以,圓的方程為考點:1.直線方程;2.圓的方程18、(1),;(2).【解析】(1)分析可知的兩根是、,利用韋達定理可求得實數(shù)、的值;(2)分析可知不等式在上恒成立,可得出,由此可解得實數(shù)的取值范圍.【詳解】由已知可知,方程的兩根是、且,所以,解得;(2),可得,,因為在上恒成立,則在上恒成立,所以,,解得.因此,實數(shù)的取值范圍是.19、(1);(2).【解析】(1)利用二次函數(shù)單調(diào)性進行求解即可;(2)利用換元法、構(gòu)造函數(shù)法,結(jié)合二次函數(shù)的性質(zhì)進行求解即可.【小問1詳解】當時,函數(shù)的對稱軸為:,因此函數(shù)當時,單調(diào)遞增,故所以;【小問2詳解】由(1)知,不等式,可化為:即,令,,令,.20、(1)(2)(3)【解析】(1)利用求得,由此求得.(2)利用換元法,對進行分類討論,結(jié)合二次函數(shù)的性質(zhì)求得正確答案.(3)利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論