2025屆衡水市重點中學高一數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2025屆衡水市重點中學高一數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2025屆衡水市重點中學高一數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2025屆衡水市重點中學高一數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2025屆衡水市重點中學高一數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆衡水市重點中學高一數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,,則()A. B.C. D.2.的值為()A. B.C. D.3.若集合,,則A. B.C. D.4.為了保護水資源,提倡節(jié)約用水,某城市對居民生活用水實行“階梯水價”,計費方法如下表:每戶每月用水量水價不超過12m3的部分3元/m3超過12m3但不超過18m3的部分6元/m3超過18m3的部分9元/m3若某戶居民本月繳納的水費為90元,則此戶居民本月的用水量為()A.17 B.18C.19 D.205.已知函數(shù),若存在R,使得不等式成立,則實數(shù)的取值范圍為()A. B.C. D.6.已知,則的大小關系是()A. B.C. D.7.如圖,網(wǎng)格線上小正方形邊長為1,粗線畫出的是某幾何體的三視圖,那么該幾何體的體積是A.3 B.2C. D.8.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知點,直線,則點A到直線l的距離為()A.1 B.2C. D.10.已知向量,向量,則的最大值,最小值分別是()A.,0 B.4,C.16,0 D.4,0二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若在上是增函數(shù),且直線與的圖象在上恰有一個交點,則的取值范圍是________.12.已知函數(shù),現(xiàn)有如下幾個命題:①該函數(shù)為偶函數(shù);

②是該函數(shù)的一個單調遞增區(qū)間;③該函數(shù)的最小正周期為;④該函數(shù)的圖像關于點對稱;⑤該函數(shù)值域為.其中正確命題的編號為______13.已知α∈.若冪函數(shù)f(x)=xα為奇函數(shù),且在(0,+∞)上遞減,則=______.14.函數(shù)(且)恒過的定點坐標為_____,若直線經過點且,則的最小值為___________.15.計算:=_______________.16.已知實數(shù)滿足,則________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某廠商計劃投資生產甲、乙兩種商品,經市場調研發(fā)現(xiàn),如圖所示,甲、乙商品的投資x與利潤y(單位:萬元)分別滿足函數(shù)關系與(1)求,與,的值;(2)該廠商現(xiàn)籌集到資金20萬元,如何分配生產甲、乙商品的投資,可使總利潤最大?并求出總利潤的最大值18.如圖,已知圓心在x軸正半軸上的圓C與直線5x+12y+21=0相切,與y軸交于M,N兩點且∠MCN=120°.(1)求圓C的標準方程;(2)求過點P(0,3)的直線l與圓C交于不同的兩點D,E,若|DE|=2,求直線l的方程.19.若函數(shù)在定義域內存在實數(shù),使得成立,則稱函數(shù)有“飄移點”Ⅰ試判斷函數(shù)及函數(shù)是否有“飄移點”并說明理由;Ⅱ若函數(shù)有“飄移點”,求a的取值范圍20.已知由方程kx2-8x+16=0的根組成的集合A只有一個元素,試求實數(shù)k的值21.在2020年初,新冠肺炎疫情襲擊全國,麗水市某村施行“封村”行動.為了更好地服務于村民,村衛(wèi)生室需建造一間地面面積為30平方米且墻高為3米的長方體供給監(jiān)測站.供給監(jiān)測站的背面靠墻,無需建造費用,因此甲工程隊給出的報價為:正面新建墻體的報價為每平方米600元,左右兩面新建墻體報價為每平方米360元,屋頂和地面以及其他報價共計21600元,設屋子的左右兩側墻的長度均為x米.(1)當左右兩面墻的長度為多少時,甲工程隊報價最低,最低報價為多少?(2)現(xiàn)有乙工程隊也參與此監(jiān)測站建造競標,其給出的整體報價為元,若無論左右兩面墻的長度為多少米,乙工程隊都能競標成功,試求a的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】解出不等式,然后可得答案.【詳解】因為,所以故選:D2、B【解析】由誘導公式可得,故選B.3、C【解析】因為集合,,所以A∩B=x故選C.4、D【解析】根據(jù)給定條件求出水費與水價的函數(shù)關系,再由給定函數(shù)值計算作答.【詳解】依題意,設此戶居民月用水量為,月繳納的水費為y元,則,整理得:,當時,,當時,,因此,由得:,解得,所以此戶居民本月的用水量為.故選:D5、D【解析】利用函數(shù)的奇偶性與單調性把函數(shù)不等式變形,然后由分離參數(shù)法轉化為求函數(shù)的最值【詳解】是奇函數(shù),且在上是增函數(shù),因此不等式可化為,所以,,由得的最小值是2,所以故選:D6、B【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質,三角函數(shù)的性質比較大小即可【詳解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴綜上可知故選:B7、D【解析】由三視圖可知該幾何體為有一條側棱與底面垂直的三棱錐.其體積為故選D8、A【解析】根據(jù)終邊相同的角的三角函數(shù)值相等,結合充分不必要條件的定義,即可得到答案;【詳解】,當,“”是“”的充分不必要條件,故選:A9、C【解析】利用點到直線的距離公式計算即可.【詳解】解:點,直線,則點A到直線l的距離,故選:C.【點睛】點到直線的距離.10、D【解析】利用向量的坐標運算得到|2用θ的三角函數(shù)表示化簡求最值【詳解】解:向量,向量,則2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分別是:16,0;所以|2的最大值,最小值分別是4,0;故選:D【點睛】本題考查了向量的坐標運算以及三角函數(shù)解析式的化簡;利用了兩角差的正弦公式以及正弦函數(shù)的有界性二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由正弦函數(shù)的單調性以及圖象的分析得出的取值范圍.【詳解】因為在上是增函數(shù),所以,解得因為直線與的圖象在上恰有一個交點,所以,解得,綜上.故答案為:12、②③【解析】由于為非奇非偶函數(shù),①錯誤.,此時,其在上為增函數(shù),②正確.由于,所以函數(shù)最小正周期為,③正確.由于,故④正確.當時,,故⑤錯誤.綜上所述,正確的編號為②③.13、-1【解析】根據(jù)冪函數(shù),當為奇數(shù)時,函數(shù)為奇函數(shù),時,函數(shù)在(0,+∞)上遞減,即可得出答案.【詳解】解:∵冪函數(shù)f(x)=xα為奇函數(shù),∴可?。?,1,3,又f(x)=xα在(0,+∞)上遞減,∴α<0,故=-1.故答案為:-1.14、①.②.【解析】根據(jù)對數(shù)函數(shù)過定點得過定點,再根據(jù)基本不等式“1”的用法求解即可.【詳解】解:函數(shù)(且)由函數(shù)(且)向上平移1個單位得到,函數(shù)(且)過定點,所以函數(shù)過定點,即,所以,因為,所以所以,當且僅當,即時等號成立,所以的最小值為故答案為:;15、【解析】考點:兩角和正切公式點評:本題主要考查兩角和的正切公式變形的運用,抓住和角是特殊角,是解題的關鍵.16、4【解析】方程的根與方程的根可以轉化為函數(shù)與函數(shù)交點的橫坐標和函數(shù)與函數(shù)交點的橫坐標,再根據(jù)與互為反函數(shù),關于對稱,即可求出答案.【詳解】,,令,,此方程的解即為函數(shù)與函數(shù)交點的橫坐標,設為,如下圖所示;,此方程的解即為函數(shù)與函數(shù)交點的橫坐標,設為,如下圖所示,與互反函數(shù),關于對稱,聯(lián)立方程,解得,即,.故答案為:4.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),,,(2)分配生產乙商品的投資為1萬元,甲商品的投資為萬元,此時總利潤的最大值為31.5萬元.【解析】(1)代入點的坐標,求出,與,的值;(2)在第一問的基礎上,表達出總利潤的關系式,利用配方求出最大值.【小問1詳解】將代入中,,解得:,將代入中,,解得:,所以,,,.【小問2詳解】設分配生產乙商品的投資為m(0≤m≤20)萬元、甲商品的投資為萬元,此時的總利潤為w,則,因為0≤m≤20,所以當,即時,w取得最大值,即分配生產乙商品的投資為1萬元,甲商品的投資為萬元,此時總利潤的最大值為31.5萬元.18、(1)(x﹣1)2+y2=4;(2)y或x=0【解析】(1)由題意設圓心為,且,再由已知求解三角形可得,于是可設圓的標準方程為,由點到直線的距離列式求得值,則圓的標準方程可求;(2)當直線的斜率存在時,設直線的方程為,即,利用圓心到直線的距離等于半徑列式求得,可得直線方程,驗證當時滿足題意,則答案可求【詳解】解:(1)由題意設圓心為,且,由,可得中,,,則,于是可設圓的標準方程為,又點到直線的距離,解得或(舍去)故圓的標準方程為;(2)當直線的斜率存在時,設直線的方程為,即則由題意可知,圓心到直線的距離故,解得又當時滿足題意,故直線的方程為或【點睛】本題考查圓的標準方程的求法,考查直線與圓位置關系的應用,考查計算能力,是中檔題.19、(Ⅰ)函數(shù)有“飄移點”,函數(shù)沒有“飄移點”.證明過程詳見解析(Ⅱ)【解析】Ⅰ按照“飄移點”的概念,只需方程有根即可,據(jù)此判斷;Ⅱ由題得,化簡得,可得,可求>,解得a范圍【詳解】Ⅰ函數(shù)有“飄移點”,函數(shù)沒有“飄移點”,證明如下:設在定義域內有“飄移點”,所以:,即:,解得:,所以函數(shù)在定義域內有“飄移點”是0;設函數(shù)有“飄移點”,則,即由此方程無實根,與題設矛盾,所以函數(shù)沒有飄移點Ⅱ函數(shù)的定義域是,因為函數(shù)有“飄移點”,所以:,即:,化簡可得:,可得:,因為,所以:,所以:,因為當時,方程無解,所以,所以,因為函數(shù)的定義域是,所以:,即:,因為,所以,即:,所以當時,函數(shù)有“飄移點”【點睛】本題考查了函數(shù)的方程與函數(shù)間的關系,即利用函數(shù)思想解決方程根的問題,利用方程思想解決函數(shù)的零點問題,由轉化為關于方程在有解是本題關鍵.20、k=0或1.【解析】討論當k=0時和當k≠0時,兩種情況,其中當k≠0時,只需Δ=64-64k=0即可.試題解析:當k=0時,原方程變?yōu)椋?x+16=0,所以x=2,此時集合A中只有一個元素2.當k≠0時,要使一元二次方程kx2-8x+16=0有一個實根,需Δ=64-64k=0,即k=1.此時方程的解為x1=x2=4,集合A中只有一個元素4.綜上可知k=0或1.21、(1)當左右兩面墻的長度為5時,報價最低為43200元;(2).【解析】(1)設甲工程隊的總造價

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論