版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆吉林省吉林市蛟河市蛟河一中高二數(shù)學第一學期期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)x,y滿足約束條件,則的最大值為()A. B.0C.3 D.52.已知數(shù)列的前n項和為,,,則()A. B.C. D.3.若空間中n個不同的點兩兩距離都相等,則正整數(shù)n的取值A.至多等于3 B.至多等于4C.等于5 D.大于54.已知等比數(shù)列的公比為,則“是遞增數(shù)列”的一個充分條件是()A. B.C. D.5.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.6.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,若,則公比()A. B.2C.2或 D.47.從集合{2,3,4,5}中隨機抽取一個數(shù)m,從集合{1,3,5}中隨機抽取一個數(shù)n,則向量=(m,n)與向量=(1,-1)垂直的概率為()A. B.C. D.8.已知直線與直線平行,則實數(shù)a的值為()A.1 B.C.1或 D.9.若a,b,c為實數(shù),且,則以下不等式成立的是()A. B.C. D.10.在中,角A,B,C所對的邊分別為a,b,c,,則的形狀為()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形11.方程表示的曲線為焦點在y軸上的橢圓,則k的取值范圍是()A. B.C.或 D.12.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,若圓的過點的三條弦的長,,構(gòu)成等差數(shù)列,則該數(shù)列的公差的最大值是______.14.如圖,已知與所在平面垂直,且,,,點P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______15.若斜率為的直線與橢圓交于,兩點,且的中點坐標為,則___________.16.等差數(shù)列前3項的和為30,前6項的和為100,則它的前9項的和為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p:函數(shù)有零點;命題,(1)若命題p,q均為真命題,求實數(shù)a的取值范圍;(2)若為真命題,為假命題,求實數(shù)a的取值范圍18.(12分)已知定圓,過的一條動直線與圓相交于、兩點,(1)當與定直線垂直時,求出與的交點的坐標,并證明過圓心;(2)當時,求直線的方程19.(12分)如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,,(1)求證:;(2)求直線與平面所成角的正弦值;(3)線段上是否存在點,使得直線平面?若存在,求的值;若不存在,請說明理由20.(12分)設橢圓的左、右焦點分別為,.點滿足.(1)求橢圓的離心率;(2)設直線與橢圓相交于,兩點,若直線與圓相交于,兩點,且,求橢圓的方程.21.(12分)設或,(1)若時,p是q的什么條件?(2)若p是q的必要不充分條件,求a的取值范圍22.(10分)如圖,在四棱錐中,為平行四邊形,,平面,且,點是的中點.(1)求證:平面;(2)在線段上(不含端點)是否存在一點,使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先畫出可行域,由,得,作出直線,向上平移過點A時,取得最大值,求出點A的坐標,代入可求得結(jié)果【詳解】不等式組表示的可行域,如圖所示由,得,作出直線,向上平移過點A時,取得最大值,由,得,即,所以的最大值為,故選:D2、D【解析】根據(jù)給定遞推公式求出即可計算作答.【詳解】因數(shù)列的前n項和為,,,則,,,所以.故選:D3、B【解析】先考慮平面上的情況:只有三個點的情況成立;再考慮空間里,只有四個點的情況成立,注意運用外接球和三角形三邊的關系,即可判斷解:考慮平面上,3個點兩兩距離相等,構(gòu)成等邊三角形,成立;4個點兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個點兩兩距離相等,構(gòu)成一個正四面體,成立;若n>4,由于任三點不共線,當n=5時,考慮四個點構(gòu)成的正四面體,第五個點,與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點評:本題考查空間幾何體的特征,主要考查空間兩點的距離相等的情況,注意結(jié)合外接球和三角形的兩邊與第三邊的關系,屬于中檔題和易錯題4、D【解析】由等比數(shù)列滿足遞增數(shù)列,可進行和兩項關系的比較,從而確定和的大小關系.【詳解】由等比數(shù)列是遞增數(shù)列,若,則,得;若,則,得;所以等比數(shù)列是遞增數(shù)列,或,;故等比數(shù)列是遞增數(shù)列是遞增數(shù)列的一個充分條件為,.故選:D.5、A【解析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時,y==故選A點睛:研究函數(shù)最值主要根據(jù)導數(shù)研究函數(shù)的單調(diào)性,找到最值,分式求導公式要記熟6、B【解析】由兩式相除即可求公比.【詳解】設等比數(shù)列的公比為q,∵其各項均為正數(shù),故q>0,∵,∴,又∵,∴=4,則q=2.故選:B.7、A【解析】根據(jù)分步計數(shù)乘法原理求得所有的)共有12個,滿足兩個向量垂直的共有2個,利用古典概型公式可得結(jié)果.【詳解】集合{2,3,4,5}中隨機抽取一個數(shù),有4種方法;從集合{1,3,5}中隨機抽取一個數(shù),有3種方法,所以,所有的共有個,由向量與向量垂直,可得,即,故滿足向量與向量垂直的共有2個:,所以向量與向量垂直的概率為,故選A.【點睛】本題主要考查分步計數(shù)乘法原理的應用、向量垂直的性質(zhì)以及古典概型概率公式的應用,屬于中檔題.在解古典概型概率題時,首先求出樣本空間中基本事件的總數(shù),其次求出概率事件中含有多少個基本事件,然后根據(jù)公式求得概率.8、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A9、C【解析】利用不等式的性質(zhì)直接推導和取值驗證相結(jié)合可解.【詳解】取可排除ABD;由不等式的性質(zhì)易得C正確.故選:C10、C【解析】根據(jù)三角恒等變換結(jié)合正弦定理化簡求得,即可判定三角形形狀.【詳解】解:由題,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形為直角三角形.故選:C.11、D【解析】根據(jù)曲線為焦點在y軸上的橢圓可得出答案.【詳解】因為方程表示的曲線為焦點在y軸上的橢圓,所以,解得.故選:D.12、A【解析】如圖:如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點是小圓轉(zhuǎn)動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動,圓心轉(zhuǎn)過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點.而在小圓中,圓心角(是小圓與的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置.由于的任意性,可知點的軌跡是大圓水平的這條直徑.類似的可知點的軌跡是大圓豎直的這條直徑.故選A.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)題意,求得過點的直線截圓所得弦長的最大值和最小值,即可求得公差的最大值.【詳解】圓的圓心,半徑,設點為點,因為,故點在圓內(nèi),當直線過點,且經(jīng)過圓心時,該直線截圓所得弦長取得最大值;當直線過點,且與直線垂直時,該直線截圓所得弦長取得最小值,此時,則滿足題意的直線為,即,又,則該直線截圓所得弦長為;根據(jù)題意,要使得數(shù)列的公差最大,則,故最大公差.故答案為:.14、##【解析】取的中點,的中點,以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,設,根據(jù)求出,再由空間向量的數(shù)量積即可求解.【詳解】取的中點,的中點,如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,不妨設,則,,,由,即,解得,所以,故,設為平面ACQ的一個法向量,因為,,由,即,所以,設直線AP與平面ACQ所成角為,則.故答案為:15、-1【解析】根據(jù)給定條件設出點A,B的坐標,再借助“點差法”即可計算得解.【詳解】依題意,線段的中點在橢圓C內(nèi),設,,由兩式相減得:,而,于是得,即,所以.故答案為:16、210【解析】依題意,、、成等差數(shù)列,從而可求得答案【詳解】∵等差數(shù)列{an}的前3項和為30,前6項和為100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差數(shù)列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【點睛】本題考查等差數(shù)列的性質(zhì),熟練利用、、成等差數(shù)列是關鍵,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)二次函數(shù)的性質(zhì)求p為真時a的取值范圍,根據(jù)的性質(zhì)判斷與有交點求q為真時a的取值范圍,進而求p,q均為真時a的取值范圍.(2)根據(jù)復合命題的真假可得p,q一真一假,討論p、q的真假分別求a的取值范圍,最后取并集即可.【小問1詳解】若p為真,,解得或,所以若q為真,因為在上為增函數(shù),所以,故,所以若p,q均為真命題,a的取值范圍為【小問2詳解】由題設,易知:p,q兩命題一真一假當p真q假時,p為真,則或,q為假,則或,此時a的取值范圍為;當p假q真時,p為假,則,q為真,則,此時a的取值范圍為綜上,實數(shù)a的取值范圍為.18、(1),證明見解析;(2)或.【解析】(1)根據(jù)題意可設直線的方程為,將點的坐標代入直線的方程,可求得的值,再將直線、的方程聯(lián)立,可得出這兩條直線的交點的坐標,將圓心的坐標代入直線的方程可證得結(jié)論成立;(2)利用勾股定理可求得圓心到直線的距離,對直線的斜率是否存在進行分類討論,設出直線方程,利用點到直線的距離公式求出參數(shù)的值,即可得出直線的方程.【小問1詳解】解:當直線與定直線垂直時,可設直線的方程為,將點的坐標代入直線的方程可得,則,此時,直線的方程為,聯(lián)立可得,即點,圓心的坐標為,因為,故直線過圓心.【小問2詳解】解:設圓心到直線的距離為,則.當直線的斜率不存在時,直線的方程為,此時圓心到直線的距離為,合乎題意;當直線的斜率存在時,可設直線的方程為,即,由題意可得,解得,此時直線的方程為,即.綜上所述,直線的方程為或.19、(1)證明見解析(2)(3)存在點,使得平面,且【解析】(1)由面面垂直的性質(zhì)可得平面,再由線面垂直的性質(zhì)可證得結(jié)論,(2)可證得兩兩垂直,所以分別以為軸,軸,軸建立空間直角坐標系,利用空間向量求解,(3)設,然后利用空間向量求解【小問1詳解】證明:因為為正方形,所以又因為平面平面,且平面平面,所以平面平面所以;【小問2詳解】由(1)可知,平面,所以,因為,所以兩兩垂直分別以為軸,軸,軸建立空間直角坐標系(如圖)因為,,所以,所以,設平面的一個法向量為,則,即令,則,;所以設直線與平面所成角為,則直線與平面所成角為的正弦值為;【小問3詳解】設,易知設,則,所以,所以,所以設平面的一個法向量為,則,因為,所以令,則,所以在線段上存在點,使得平面等價于存在,使得因為,由,所以,解得,所以線段上存在點,使得平面,且20、(1);(2)【解析】(1)由及兩點間距離公式可建立等式,消去b,即可求解出,主要兩個根的的要舍去;(2)聯(lián)立直線和橢圓的方程,利用弦長公式求得,再利用幾何關系求得,代入,可解得c,從而得到橢圓的方程.【詳解】(1)設,,因為,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得橢圓方程為,直線的方程為,A,B兩點的坐標滿足方程組為,消去y并整理,得,解得:,,得方程組的解和,不妨設:,,所以,于是,圓心到直線的距離為,因為,所以,整理得:,得(舍),或,所以橢圓方程為:.【點睛】關鍵點點睛:本題考查求橢圓的離心率解題關鍵是找到關于a,b,c的等量關系,第二問的關鍵是聯(lián)立直線與橢圓方程求出交點坐標,利用距離公式建立等量關系,求出c是求出橢圓方程的關鍵.21、(1)充要條件;(2).【解析】(1)根據(jù)解一元二次不等式的方法,結(jié)合充分性、必要性的定義進行求解判斷即可;(2)根據(jù)必要不充分條件的性質(zhì)進行求解即可.【小問1詳解】因為,所以,解得或,顯然p是q的充要條件;【小問2詳解】,當時,該不等式的解集為全體實數(shù)集,顯然由,但不成立,因此p是q的充分不必要條件,不符合題意;當時,該不等式的解集為:,顯然當時,不一定成立,因此p不是q的必要不充分條件,當時,該不等式解集為:,要想p是q的必要不充分條件,只需,而,所以,因此a的取值范圍為:.22、(1)見解析(2)存在,【解析】(1)連接交于點,由三角形中位線性質(zhì)知,由線面平行判定定理證得結(jié)論;(2)以為原點建立空間直角坐標系,假設,可用表示出點坐標;根據(jù)二面角的向量求法可根據(jù)二面角的余弦值構(gòu)造出關于的方程,從而解得結(jié)果.【詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 抹灰施工養(yǎng)護周期制定方案
- 施工人員培訓方案
- 地下管線信息化管理方案
- 給水管網(wǎng)布置原則及規(guī)范
- 施工現(xiàn)場實習生管理方案
- 未來五年增氧機械企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年SOC測試儀企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報告
- 未來五年移動機械電氣控制企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報告
- 未來五年工業(yè)互聯(lián)網(wǎng)安全企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報告
- 道路施工安全文化建設方案
- 2026年山西警官職業(yè)學院單招綜合素質(zhì)考試備考試題帶答案解析
- 汽修廠文件檔案歸檔制度
- 高??蒲许椖苛㈨椉肮芾硪?guī)范
- 鈑噴質(zhì)檢員考試題及答案
- 學生安全教育家長會課件
- 醫(yī)務人員職業(yè)暴露與職業(yè)防護
- GB/T 9237-2017制冷系統(tǒng)及熱泵安全與環(huán)境要求
- GB/T 9065.6-2020液壓傳動連接軟管接頭第6部分:60°錐形
- GB/T 3906-20203.6 kV~40.5 kV交流金屬封閉開關設備和控制設備
- 2023年電大當代中國政治制度機考拼音排版絕對好用按字母排序
- 精益生產(chǎn)試題與答案
評論
0/150
提交評論