2025屆貴州省納雍縣第五中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第1頁
2025屆貴州省納雍縣第五中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第2頁
2025屆貴州省納雍縣第五中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第3頁
2025屆貴州省納雍縣第五中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第4頁
2025屆貴州省納雍縣第五中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆貴州省納雍縣第五中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.即空氣質(zhì)量指數(shù),越小,表明空氣質(zhì)量越好,當(dāng)不大于100時稱空氣質(zhì)量為“優(yōu)良”.如圖是某市3月1日到12日的統(tǒng)計數(shù)據(jù).則下列敘述正確的是A.這天的的中位數(shù)是B.天中超過天空氣質(zhì)量為“優(yōu)良”C.從3月4日到9日,空氣質(zhì)量越來越好D.這天的的平均值為2.如圖,在長方體中,,E,F(xiàn)分別為的中點,則異面直線與所成角的余弦值為()A. B.C. D.3.等差數(shù)列的前項和,若,則A.8 B.10C.12 D.144.為了了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為50的樣本,則分段的間隔為()A.20 B.25C.40 D.505.在數(shù)列中,,則等于A. B.C. D.6.已知點,,,動點P滿足,則的取值范圍為()A. B.C. D.7.中國歷法推測遵循以測為輔,以算為主的原則.例如《周髀算經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.二十四節(jié)氣中,從冬至到夏至的十三個節(jié)氣依次為:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種、夏至.已知《周髀算經(jīng)》中記錄某年的冬至的晷影長為13尺,夏至的晷影長是1.48尺,按照上述規(guī)律,那么《周髀算經(jīng)》中所記錄的立夏的晷影長應(yīng)為()A.尺 B.尺C.尺 D.尺8.若,則x的值為()A.4 B.6C.4或6 D.89.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.10.已知數(shù)列中,,則()A.2 B.C. D.11.已知函數(shù),,當(dāng)時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.12.雙曲線:(,)的左、右焦點分別為、,點在雙曲線上,,,則的離心率為()A. B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等比數(shù)列中,若,是方程兩根,則________.14.橢圓C:的左、右焦點分別為,,點A在橢圓上,,直線交橢圓于點B,,則橢圓的離心率為______15.等差數(shù)列的公差,是其前n項和,給出下列命題:若,且,則和都是中的最大項;給定n,對于一些,都有;存在使和同號;.其中正確命題的序號為___________.16.希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標(biāo)系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知拋物線的焦點為F,拋物線C上的點到準(zhǔn)線的最小距離為1(1)求拋物線C的方程;(2)過點F作互相垂直的兩條直線l1,l2,l1與拋物線C交于A,B兩點,l2與拋物線C交于C,D兩點,M,N分別為弦AB,CD的中點,求|MF|·|NF|的最小值18.(12分)在四棱錐中,底面是邊長為2的菱形,平面,,是的中點.(1)若為線段的中點,證明:平面;(2)線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求的長,若不存在,請說明理由.19.(12分)已知圓C經(jīng)過、兩點,且圓心在直線上(1)求圓C的方程;(2)若直線經(jīng)過點且與圓C相切,求直線的方程20.(12分)已知函數(shù)(為自然對數(shù)的底數(shù)).(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有且僅有2個零點,求實數(shù)的值.21.(12分)中,三內(nèi)角A,B,C所對的邊分別為a,b,c,已知(1)求角A;(2)若,角A的角平分線交于D,,求a22.(10分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】這12天的AQI指數(shù)值的中位數(shù)是,故A不正確;這12天中,空氣質(zhì)量為“優(yōu)良”的有95,85,77,67,72,92共6天,故B不正確;;從4日到9日,空氣質(zhì)量越來越好,,故C正確;這12天的指數(shù)值的平均值為110,故D不正確.故選C2、A【解析】利用平行線,將異面直線的夾角問題轉(zhuǎn)化為共面直線的夾角問題,再解三角形.【詳解】取BC中點H,BH中點I,連接AI、FI、,因為E為中點,在長方體中,,所以四邊形是平行四邊形,所以所以,又因為F為的中點,所以,所以,則即為異面直線與所成角(或其補(bǔ)角).設(shè)AB=BC=4,則,則,,根據(jù)勾股定理:,,,所以是等腰三角形,所以.故B,C,D錯誤.故選:A.3、C【解析】假設(shè)公差為,依題意可得.所以.故選C.考點:等差數(shù)列的性質(zhì).4、A【解析】根據(jù)系統(tǒng)抽樣定義可求得結(jié)果【詳解】分段的間隔為故選:A5、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點睛:對于含有的數(shù)列,我們看作擺動數(shù)列,往往逐一列舉出來觀察前面有限項的規(guī)律6、C【解析】由題設(shè)分析知的軌跡為(不與重合),要求的取值范圍,只需求出到圓上點的距離范圍即可.【詳解】由題設(shè),在以為直徑的圓上,令,則(不與重合),所以的取值范圍,即為到圓上點的距離范圍,又圓心到的距離,圓的半徑為2,所以的取值范圍為,即.故選:C7、B【解析】根據(jù)等差數(shù)列定義求得公差,再求解立夏的晷影長在數(shù)列中所對應(yīng)的項即可【詳解】設(shè)從冬至到夏至的十三個節(jié)氣依次為等差數(shù)列的前13項,則所以公差為,則立夏的晷影長應(yīng)為(尺)故選:B8、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C9、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B10、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.11、C【解析】由題意得出,構(gòu)造函數(shù),可知函數(shù)在區(qū)間上單調(diào)遞增,可得出對任意的恒成立,利用參變量分離法可得出,利用導(dǎo)數(shù)求得函數(shù)在區(qū)間上的最大值,由此可求得實數(shù)的取值范圍.【詳解】函數(shù)的定義域為,當(dāng)時,恒成立,即,構(gòu)造函數(shù),則,所以,函數(shù)在區(qū)間上為增函數(shù),則對任意的恒成立,,令,其中,則.,所以函數(shù)在上單調(diào)遞減;又,所以.因此,實數(shù)的取值范圍是.故選:C.12、C【解析】根據(jù)雙曲線定義、余弦定理,結(jié)合題意,求得關(guān)系,即可求得離心率.【詳解】根據(jù)題意,作圖如下:不妨設(shè),則,,①;在△中,由余弦定理可得:,代值得:,②;聯(lián)立①②兩式可得:;在△和△中,由,可得:,整理得:,③;聯(lián)立②③可得:,又,故可得:,則,則,故離心率為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】由題意求得,,再結(jié)合等比數(shù)列的性質(zhì),即可求解.【詳解】由題意知,,是方程的兩根,可得,,又由,,所以,,可得,又由,所以.故答案為:.【點睛】本題主要考查了等比數(shù)列的通項公式,以及等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設(shè)出邊長,找到邊長與之間等量關(guān)系,然后把等量關(guān)系帶入到勾股定理表達(dá)的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設(shè),則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)15、【解析】對,根據(jù)數(shù)列的單調(diào)性和可判斷;對和,利用等差數(shù)列的通項公式可直接推導(dǎo);對,利用等差數(shù)列的前項和可直接推導(dǎo).【詳解】不妨設(shè)等差數(shù)列的首項為對,,可得:,解得:,即又,則是遞減的,則中的前5項均為正數(shù),所以和都是中的最大項,故正確;對,,故有:,故正確;對,,又,則,說明不存在使和同號,故錯誤;對,有:故并不是恒成立的,故錯誤故答案為:16、①.②.【解析】(1)利用直譯法直接求出P點的軌跡(2)先利用阿氏圓的定義將轉(zhuǎn)化為P點到另一個定點的距離,然后結(jié)合拋物線的定義容易求得的最小值【詳解】設(shè)P(x,y),由阿氏圓的定義可得即化簡得則設(shè)則由拋物線的定義可得當(dāng)且僅當(dāng)四點共線時取等號,的最小值為故答案為:【點睛】本題考查了拋物線的定義及幾何性質(zhì),同時考查了阿氏圓定義的應(yīng)用.還考查了學(xué)生利用轉(zhuǎn)化思想、方程思想等思想方法解題的能力.難度較大三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)8【解析】(1)由拋物線C上的點到準(zhǔn)線的最小距離為1,所以,即可求得拋物線的方程;(2)設(shè)直線AB的斜率為k,則直線CD的斜率為,得到直線AB的方程為,聯(lián)立方程,求得,進(jìn)而求得的坐標(biāo),得到的表達(dá)式,結(jié)合基本不等式,即可求解.【小問1詳解】解:因為拋物線C上的點到準(zhǔn)線的最小距離為1,所以,解得,所以拋物線C的方程為【小問2詳解】解:由(1)可知焦點為F(1,0),由已知可得ABCD,所以直線AB,CD的斜率都存在且均不為0,設(shè)直線AB斜率為k,則直線CD的斜率為,所以直線AB的方程為,聯(lián)立方程,消去x得,設(shè)點A(x1,y1),B(x2,y2),則,因為M(xM,yM)為弦AB的中點,所以,由,得,所以點,同理可得,所以,=,所以,當(dāng)且僅當(dāng),即時,等號成立,所以的最小值為18、(1)證明見解析;(2)存在點,且的長為,理由見解析.【解析】(1)取的中點為,連接,得到,結(jié)合面面平行的判定定理證得平面平面,進(jìn)而得到平面;(2)以為原點,所在的直線分別為軸、軸,以垂直平面的直線為軸,建立空間直角坐標(biāo)系,設(shè),求得的法向量為和向量,結(jié)合向量的夾角公式列出方程,求得的值,即可求解.【小問1詳解】證明:取的中點為,連接,因為分別為的中點,所以,又因為平面,且,所以平面平面,又由平面,所以平面.【小問2詳解】解:以為原點,所在的直線分別為軸、軸,以垂直平面的直線為軸,建立空間直角坐標(biāo)系,如圖所示,因為底面是邊長為2的菱形,設(shè),在直角中,可得,在直角中,可得,在中,因為,所以,即,解得,設(shè),可得,則,設(shè)平面的法向量為,則,令,可得,設(shè)直線與平面所成角為,所以,解得,即,所以存在點,且的長為.19、(1);(2)【解析】(1)根據(jù)圓心在弦的垂直平分線上,先求出弦的垂直平分線的方程與聯(lián)立可求得圓心坐標(biāo),再用兩點間的距離公式求得半徑,進(jìn)而求得圓的方程;(2)當(dāng)直線斜率不存在時,與圓相切,方程為;當(dāng)直線斜率存在時,設(shè)斜率為,寫出其點斜式方程,利用圓心到直線的距離等于半徑建立方程求解出的值.試題解析:(1)依題意知線段的中點坐標(biāo)是,直線的斜率為,故線段的中垂線方程是即,解方程組得,即圓心的坐標(biāo)為,圓的半徑,故圓的方程是(2)若直線斜率不存在,則直線方程是,與圓相離,不合題意;若直線斜率存在,可設(shè)直線方程是,即,因為直線與圓相切,所以有,解得或所以直線的方程是或.20、(1)函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)【解析】(1)利用導(dǎo)數(shù)求得的單調(diào)區(qū)間.(2)利用導(dǎo)數(shù)研究的單調(diào)性、極值,從而求得的值.【小問1詳解】由,得,令,得或;令,得.∴函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,.【小問2詳解】∵,∴.當(dāng)時,;當(dāng)時,∴的單調(diào)遞減區(qū)間為,;單調(diào)遞增區(qū)間為.∴的極小值為,極大值為.當(dāng)時,;當(dāng)時,.又∵函數(shù)有且僅有2個零點,∴實數(shù)的值為.21、(1)(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論