湖北省荊州市沙市中學2025屆高三3月份第一次模擬考試數(shù)學試卷含解析_第1頁
湖北省荊州市沙市中學2025屆高三3月份第一次模擬考試數(shù)學試卷含解析_第2頁
湖北省荊州市沙市中學2025屆高三3月份第一次模擬考試數(shù)學試卷含解析_第3頁
湖北省荊州市沙市中學2025屆高三3月份第一次模擬考試數(shù)學試卷含解析_第4頁
湖北省荊州市沙市中學2025屆高三3月份第一次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省荊州市沙市中學2025屆高三3月份第一次模擬考試數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為虛數(shù)單位,則的虛部為()A. B. C. D.2.已知,滿足條件(為常數(shù)),若目標函數(shù)的最大值為9,則()A. B. C. D.3.已知集合,,則A. B.C. D.4.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.5.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學家畢達哥拉斯公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.6.設復數(shù),則=()A.1 B. C. D.7.已知函數(shù),則()A. B. C. D.8.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關于對稱 D.函數(shù)圖像關于對稱9.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關系為()A. B.C. D.10.設,,,則,,三數(shù)的大小關系是A. B.C. D.11.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行12.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.84二、填空題:本題共4小題,每小題5分,共20分。13.一個村子里一共有個人,其中一個人是謠言制造者,他編造了一條謠言并告訴了另一個人,這個人又把謠言告訴了第三個人,如此等等.在每一次謠言傳播時,謠言的接受者都是在其余個村民中隨機挑選的,當謠言傳播次之后,還沒有回到最初的造謠者的概率是_______.14.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.15.設集合,(其中e是自然對數(shù)的底數(shù)),且,則滿足條件的實數(shù)a的個數(shù)為______.16.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為貫徹十九大報告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗田中各隨機抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大?。ńY(jié)論不要求證明)18.(12分)已知橢圓的左焦點為F,上頂點為A,直線AF與直線垂直,垂足為B,且點A是線段BF的中點.(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點,P是橢圓C上位于第一象限的一點,直線MP與直線交于點Q,且,求點P的坐標.19.(12分)已知在中,a、b、c分別為角A、B、C的對邊,且.(1)求角A的值;(2)若,設角,周長為y,求的最大值.20.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點,成等差數(shù)列,且,求a的值.21.(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.22.(10分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用復數(shù)的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數(shù)的運算以及復數(shù)的概念,注意復數(shù)的虛部為,不是,本題為基礎題,也是易錯題.2、B【解析】

由目標函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標,然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標函數(shù)的最大值為9,可得直線與直線的交點,使目標函數(shù)取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.3、D【解析】

因為,,所以,,故選D.4、A【解析】

畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.5、C【解析】

先求出五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個數(shù),∴6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數(shù)的應用.6、A【解析】

根據(jù)復數(shù)的除法運算,代入化簡即可求解.【詳解】復數(shù),則故選:A.【點睛】本題考查了復數(shù)的除法運算與化簡求值,屬于基礎題.7、A【解析】

根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎題.8、C【解析】

依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調(diào)性,屬于基礎題.9、C【解析】

根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.10、C【解析】

利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點睛】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎題,解題時選擇合適的中間值比較是關鍵,注意合理地進行等價轉(zhuǎn)化.11、B【解析】

根據(jù)充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.12、B【解析】

畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用相互獨立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會回到最初的人;從第2次傳播開始,每1次謠言傳播,第一個制造謠言的人被選中的概率都是,沒有被選中的概率是.次傳播是相互獨立的,故為故答案為:【點睛】本題考查了相互獨立事件概率的乘法公式,考查了考生的分析能力,屬于基礎題.14、8【解析】

根據(jù)偽代碼逆向運算求得結(jié)果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:【點睛】本題考查算法中的語言,屬于基礎題.15、【解析】

可看出,這樣根據(jù)即可得出,從而得出滿足條件的實數(shù)的個數(shù)為1.【詳解】解:,或,在同一平面直角坐標系中畫出函數(shù)與的圖象,由圖可知與無交點,無解,則滿足條件的實數(shù)的個數(shù)為.故答案為:.【點睛】考查列舉法的定義,交集的定義及運算,以及知道方程無解,屬于基礎題.16、【解析】

由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【點睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關系,意在考查方程思想,計算能力,屬于中檔題型,本題的關鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對角互補.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】

設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結(jié)果;(2)設事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據(jù)題意直接判斷和的大小即可.【詳解】設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設事件為“甲的高度大于乙的高度”.由題意知.所以事件的概率;(3).【點睛】本題考查概率的求法,考查互斥事件加法公式、相互獨立事件概率乘法公式等基礎知識,考查運算求解能力,是中等題.18、(I).(II)【解析】

(I)寫出坐標,利用直線與直線垂直,得到.求出點的坐標代入,可得到的一個關系式,由此求得和的值,進而求得橢圓方程.(II)設出點的坐標,由此寫出直線的方程,從而求得點的坐標,代入,化簡可求得點的坐標.【詳解】(I)∵橢圓的左焦點,上頂點,直線AF與直線垂直∴直線AF的斜率,即①又點A是線段BF的中點∴點的坐標為又點在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設由(I)易得頂點M、N的坐標為∴直線MP的方程是:由得:又點P在橢圓上,故∴∴∴或(舍)∴∴點P的坐標為【點睛】本小題主要考查直線和圓錐曲線的位置關系,考查兩直線垂直的條件,考查向量數(shù)量積的運算.屬于中檔題.在解題過程中,首先閱讀清楚題意,題目所敘述的坐標、所敘述的直線是怎么得到的,向量的數(shù)量積對應的坐標都有哪一些,應該怎么得到,這些在讀題的時候需要分析清楚.19、(1);(2).【解析】

(1)利用正弦定理,結(jié)合題中條件,可以得到,之后應用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周長,利用三角函數(shù)的最值求解即可.【詳解】(1)由已知可得,結(jié)合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴當,即時,.【點睛】該題主要考查的是有關解三角形的問題,解題的關鍵是掌握正余弦定理,屬于簡單題目.20、(1),(2)【解析】

(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論