首都經(jīng)濟(jì)貿(mào)易大學(xué)《大數(shù)據(jù)應(yīng)用案例》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
首都經(jīng)濟(jì)貿(mào)易大學(xué)《大數(shù)據(jù)應(yīng)用案例》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
首都經(jīng)濟(jì)貿(mào)易大學(xué)《大數(shù)據(jù)應(yīng)用案例》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
首都經(jīng)濟(jì)貿(mào)易大學(xué)《大數(shù)據(jù)應(yīng)用案例》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
首都經(jīng)濟(jì)貿(mào)易大學(xué)《大數(shù)據(jù)應(yīng)用案例》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁首都經(jīng)濟(jì)貿(mào)易大學(xué)《大數(shù)據(jù)應(yīng)用案例》

2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在大數(shù)據(jù)時(shí)代,數(shù)據(jù)可視化變得越來越重要,以下關(guān)于數(shù)據(jù)可視化的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)可視化可以幫助用戶更好地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以使用圖表、圖形等多種形式展示數(shù)據(jù)C.數(shù)據(jù)可視化只適用于小規(guī)模數(shù)據(jù)的展示D.數(shù)據(jù)可視化可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性2、在大數(shù)據(jù)的處理中,數(shù)據(jù)融合是將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起的過程。假設(shè)要將來自不同傳感器的環(huán)境監(jiān)測(cè)數(shù)據(jù)進(jìn)行融合,以獲得更全面和準(zhǔn)確的環(huán)境狀況評(píng)估。以下哪種數(shù)據(jù)融合方法最適合這種情況?()A.基于特征的融合B.基于決策的融合C.基于模型的融合D.以上方法結(jié)合使用3、在大數(shù)據(jù)存儲(chǔ)中,副本機(jī)制常用于提高數(shù)據(jù)的可靠性和可用性。假設(shè)一個(gè)分布式存儲(chǔ)系統(tǒng)中有一份數(shù)據(jù)存在三個(gè)副本。以下關(guān)于副本管理的描述,正確的是:()A.副本應(yīng)存儲(chǔ)在同一物理位置,便于管理和維護(hù)B.副本之間應(yīng)保持完全同步,以確保數(shù)據(jù)一致性C.可以根據(jù)節(jié)點(diǎn)的負(fù)載和網(wǎng)絡(luò)狀況動(dòng)態(tài)調(diào)整副本的位置D.副本數(shù)量越多越好,能最大限度保證數(shù)據(jù)安全4、在大數(shù)據(jù)的數(shù)據(jù)庫優(yōu)化中,索引的使用可以提高查詢性能。假設(shè)一個(gè)數(shù)據(jù)庫中有大量的交易記錄,經(jīng)常需要根據(jù)交易時(shí)間進(jìn)行查詢。以下哪種索引類型最適合?()A.B樹索引B.哈希索引C.位圖索引D.全文索引5、在大數(shù)據(jù)處理中,數(shù)據(jù)并行處理是一種常用的技術(shù),以下關(guān)于數(shù)據(jù)并行處理的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)并行處理可以提高數(shù)據(jù)處理的速度和效率B.數(shù)據(jù)并行處理需要將數(shù)據(jù)分成多個(gè)小塊,分別進(jìn)行處理C.數(shù)據(jù)并行處理只適用于大規(guī)模數(shù)據(jù)的處理,不適用于小規(guī)模數(shù)據(jù)的處理D.數(shù)據(jù)并行處理需要使用分布式計(jì)算框架,如MapReduce、Spark等6、對(duì)于一個(gè)需要處理大量地理空間數(shù)據(jù)的交通大數(shù)據(jù)系統(tǒng),以下哪種技術(shù)能夠提供有效的位置服務(wù)和路徑規(guī)劃?()A.地理信息系統(tǒng)B.路徑規(guī)劃算法C.空間索引D.以上都是7、在大數(shù)據(jù)的分布式計(jì)算中,數(shù)據(jù)傾斜可能會(huì)導(dǎo)致性能問題。假設(shè)一個(gè)任務(wù)中某些鍵的值出現(xiàn)頻率遠(yuǎn)遠(yuǎn)高于其他鍵,以下哪種方法可以緩解數(shù)據(jù)傾斜?()A.增加計(jì)算節(jié)點(diǎn)的數(shù)量B.對(duì)數(shù)據(jù)進(jìn)行重新分區(qū)C.使用更高效的算法D.忽略數(shù)據(jù)傾斜,繼續(xù)計(jì)算8、在大數(shù)據(jù)處理中,以下哪種數(shù)據(jù)結(jié)構(gòu)常用于分布式計(jì)算中的數(shù)據(jù)共享和協(xié)調(diào)?()A.隊(duì)列B.棧C.分布式緩存D.二叉樹9、在大數(shù)據(jù)分析中,數(shù)據(jù)血緣關(guān)系的追蹤至關(guān)重要。以下關(guān)于數(shù)據(jù)血緣的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)血緣能夠清晰展示數(shù)據(jù)的來源、處理過程和流向,有助于理解數(shù)據(jù)的產(chǎn)生和演變B.通過數(shù)據(jù)血緣,可以快速定位數(shù)據(jù)質(zhì)量問題的根源,便于進(jìn)行問題排查和修復(fù)C.數(shù)據(jù)血緣只在數(shù)據(jù)倉庫和數(shù)據(jù)處理流程中重要,對(duì)于實(shí)時(shí)數(shù)據(jù)分析系統(tǒng)意義不大D.建立和維護(hù)數(shù)據(jù)血緣關(guān)系需要在數(shù)據(jù)處理的各個(gè)環(huán)節(jié)進(jìn)行記錄和跟蹤10、在大數(shù)據(jù)應(yīng)用中,輿情分析是一個(gè)重要領(lǐng)域。如果要快速了解公眾對(duì)某個(gè)事件的態(tài)度傾向,以下哪種技術(shù)可以提供幫助?()A.文本分類B.情感分析C.主題模型D.以上都是11、在大數(shù)據(jù)分析中,數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)的結(jié)合越來越緊密。以下關(guān)于兩者結(jié)合的優(yōu)勢(shì)和應(yīng)用,哪項(xiàng)描述不準(zhǔn)確?()A.數(shù)據(jù)挖掘可以為機(jī)器學(xué)習(xí)提供有價(jià)值的數(shù)據(jù)特征和預(yù)處理方法B.機(jī)器學(xué)習(xí)算法可以幫助數(shù)據(jù)挖掘發(fā)現(xiàn)更復(fù)雜和深入的模式C.兩者結(jié)合在欺詐檢測(cè)、市場細(xì)分和推薦系統(tǒng)等領(lǐng)域取得了顯著成果D.數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)是完全獨(dú)立的領(lǐng)域,沒有相互交叉和融合的部分12、在處理大數(shù)據(jù)時(shí),數(shù)據(jù)清洗是一個(gè)重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)清洗旨在去除重復(fù)數(shù)據(jù)、糾正錯(cuò)誤數(shù)據(jù)和處理缺失值B.數(shù)據(jù)清洗可以通過編寫復(fù)雜的算法來自動(dòng)完成,無需人工干預(yù)C.數(shù)據(jù)清洗有助于提高數(shù)據(jù)質(zhì)量,為后續(xù)的數(shù)據(jù)分析和挖掘提供可靠基礎(chǔ)D.數(shù)據(jù)清洗可能包括對(duì)數(shù)據(jù)格式的標(biāo)準(zhǔn)化和數(shù)據(jù)類型的轉(zhuǎn)換13、在大數(shù)據(jù)處理中,常常需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和特征工程。假設(shè)有一個(gè)包含大量文本數(shù)據(jù)的數(shù)據(jù)集,需要將文本轉(zhuǎn)換為數(shù)值特征以便進(jìn)行機(jī)器學(xué)習(xí)模型的訓(xùn)練。以下哪種方法常用于文本數(shù)據(jù)的特征提???()A.TF-IDF(TermFrequency-InverseDocumentFrequency)B.主成分分析(PCA)C.獨(dú)立成分分析(ICA)D.因子分析14、大數(shù)據(jù)在金融領(lǐng)域的風(fēng)險(xiǎn)控制中發(fā)揮著重要作用。以下關(guān)于大數(shù)據(jù)在金融風(fēng)險(xiǎn)控制中的應(yīng)用,哪一個(gè)是不準(zhǔn)確的?()A.可以通過分析客戶的信用記錄和交易行為評(píng)估信用風(fēng)險(xiǎn)B.能夠?qū)崟r(shí)監(jiān)測(cè)市場動(dòng)態(tài),防范系統(tǒng)性金融風(fēng)險(xiǎn)C.大數(shù)據(jù)在金融風(fēng)險(xiǎn)控制中的應(yīng)用主要依賴于人工分析,自動(dòng)化程度較低D.可以利用大數(shù)據(jù)進(jìn)行反欺詐檢測(cè),保障金融交易安全15、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行聚類分析,并且數(shù)據(jù)分布較為復(fù)雜,以下哪種聚類算法可能更有效?()A.K-MeansB.DBSCANC.層次聚類D.以上都有可能二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)說明大數(shù)據(jù)在營銷效果評(píng)估中的應(yīng)用。2、(本題5分)什么是數(shù)據(jù)歸檔策略,在大數(shù)據(jù)中的考慮因素有哪些?3、(本題5分)在大數(shù)據(jù)中,如何進(jìn)行數(shù)據(jù)的血緣關(guān)系驗(yàn)證?4、(本題5分)解釋如何防范大數(shù)據(jù)中的數(shù)據(jù)泄露。三、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)用Python語言和Redis緩存數(shù)據(jù)庫,編寫一個(gè)程序來緩存熱門游戲的攻略和玩家心得。當(dāng)玩家查詢時(shí),快速從緩存中返回結(jié)果。2、(本題5分)利用Python語言和Neo4j圖數(shù)據(jù)庫,構(gòu)建一個(gè)社交網(wǎng)絡(luò)分析程序。對(duì)用戶之間的關(guān)系數(shù)據(jù)進(jìn)行分析,找出影響力最大的用戶和緊密的社交圈子。3、(本題5分)使用MapReduce,對(duì)一個(gè)包含網(wǎng)頁鏈接和訪問次數(shù)的數(shù)據(jù)集進(jìn)行處理,找出被訪問次數(shù)最多的前10個(gè)網(wǎng)頁鏈接。4、(本題5分)利用Python的數(shù)據(jù)分析庫,讀取一個(gè)包含房地產(chǎn)銷售數(shù)據(jù)的文件,分析不同戶型的銷售情況和價(jià)格趨勢(shì)。5、(本題5分)使用Python編寫一個(gè)程序,從給定的大量文本數(shù)據(jù)中提取出所有的人名,并統(tǒng)計(jì)每個(gè)人名出現(xiàn)的次數(shù)。假設(shè)文本數(shù)據(jù)存儲(chǔ)在一個(gè)文本文件中,每行是一段文本。四、綜合分析題(本大題共4個(gè)小題,共40分)1、(本題10分)探討大數(shù)據(jù)在游泳館中的應(yīng)用,如泳池

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論