2025屆黃山市重點中學高考適應性考試數學試卷含解析_第1頁
2025屆黃山市重點中學高考適應性考試數學試卷含解析_第2頁
2025屆黃山市重點中學高考適應性考試數學試卷含解析_第3頁
2025屆黃山市重點中學高考適應性考試數學試卷含解析_第4頁
2025屆黃山市重點中學高考適應性考試數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆黃山市重點中學高考適應性考試數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.2.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.3.已知集合,,則等于()A. B. C. D.4.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標為,則直線的方程為()A. B. C. D.5.設函數,則,的大致圖象大致是的()A. B.C. D.6.若函數的圖象如圖所示,則的解析式可能是()A. B. C. D.7.已知向量滿足,且與的夾角為,則()A. B. C. D.8.在等差數列中,若,則()A.8 B.12 C.14 D.109.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.10.已知函數(e為自然對數底數),若關于x的不等式有且只有一個正整數解,則實數m的最大值為()A. B. C. D.11.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.12.函數f(x)=lnA. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數為偶函數,則________.14.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.15.某陶瓷廠準備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經過兩次燒制,當第一次燒制合格后方可進入第二次燒制,再次燒制過程相互獨立.根據該廠現有的技術水平,經過第一次燒制后,甲、乙、丙三件產品合格的概率依次為0.5、0.6、0.4,經過第二次燒制后,甲、乙、丙三件產品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產品合格的概率為________;經過前后兩次燒制后,合格工藝品的件數為,則隨機變量的期望為________.16.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,記不等式的解集為.(1)求;(2)設,證明:.18.(12分)在平面直角坐標系xOy中,曲線C1的參數方程為(φ為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標方程;(2)設M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.19.(12分)已知是圓:的直徑,動圓過,兩點,且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個定點,使得以為直徑的圓恰好與軸相切?若存在,求出點的坐標;若不存在,請說明理由.20.(12分)已知函數.(1)若不等式有解,求實數的取值范圍;(2)函數的最小值為,若正實數,,滿足,證明:.21.(12分)設,函數,其中為自然對數的底數.(1)設函數.①若,試判斷函數與的圖像在區(qū)間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數,試判斷函數是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.22.(10分)在平面直角坐標系中,曲線的參數方程是(為參數),以原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標方程;(Ⅱ)已知直線與曲線交于,兩點,與軸交于點,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.2、A【解析】

由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點睛】本題主要考查由三視圖求面積、體積,關鍵是由三視圖還原原幾何體,意在考查學生對這些知識的理解掌握水平.3、B【解析】

解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎題型.4、A【解析】

設,,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設,∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.【點睛】本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設出弦的兩端點坐標,代入拋物線方程相減后可把弦所在直線斜率與中點坐標建立關系.5、B【解析】

采用排除法:通過判斷函數的奇偶性排除選項A;通過判斷特殊點的函數值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數的定義域為,其關于原點對稱,因為,所以函數為奇函數,其圖象關于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數的奇偶性和特殊點函數值符號判斷函數圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數值符號是求解本題的關鍵;屬于中檔題、??碱}型.6、A【解析】

由函數性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數的圖象判斷解析式問題,通過函數性質及特殊值利用排除法是解決本題的關鍵,難度一般.7、A【解析】

根據向量的運算法則展開后利用數量積的性質即可.【詳解】.故選:A.【點睛】本題主要考查數量積的運算,屬于基礎題.8、C【解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數列的基本量的求解,難度較易.已知等差數列的任意兩項的值,可通過構建和的方程組求通項公式.9、A【解析】

準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關系,可求雙曲線的離心率.【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來.10、A【解析】

若不等式有且只有一個正整數解,則的圖象在圖象的上方只有一個正整數值,利用導數求出的最小值,分別畫出與的圖象,結合圖象可得.【詳解】解:,∴,設,∴,當時,,函數單調遞增,當時,,函數單調遞減,∴,當時,,當,,函數恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數解,則的圖象在圖象的上方只有一個正整數值,∴且,即,且∴,故實數m的最大值為,故選:A【點睛】本題考查考查了不等式恒有一正整數解問題,考查了利用導數研究函數的單調性,考查了數形結合思想,考查了數學運算能力.11、A【解析】

由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設是的中心,則平面,,,外接球球心必在高上,設外接球半徑為,即,∴,解得,球體積為.故選:A.【點睛】本題考查求球的體積,解題關鍵是由已知條件確定折疊成的三棱錐是正四面體.12、C【解析】因為fx=lnx2-4x+4x-23=二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

二次函數為偶函數說明一次項系數為0,求得參數,將代入表達式即可求解【詳解】由為偶函數,知其一次項的系數為0,所以,,所以,故答案為:-5【點睛】本題考查由奇偶性求解參數,求函數值,屬于基礎題14、等腰三角形【解析】∵∴根據正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,15、0.380.9【解析】

考慮恰有一件的三種情況直接計算得到概率,隨機變量的可能取值為,計算得到概率,再計算數學期望得到答案.【詳解】第一次燒制后恰有一件產品合格的概率為:.甲、乙、丙三件產品合格的概率分別為:,,.故隨機變量的可能取值為,故;;;.故.故答案為:0.38;0.9.【點睛】本題考查了概率的計算,數學期望,意在考查學生的計算能力和應用能力.16、【解析】

由正弦定理,三角函數恒等變換的應用化簡已知等式,結合范圍可求的值,利用正弦定理可求的值,進而根據余弦定理,基本不等式可求的最大值,進而根據三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當且僅當時取等號),即最大值為4,面積的最大值為.故答案為:.【點睛】本題主要考查了正弦定理,三角函數恒等變換的應用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應用,考查了轉化思想,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】

(1)利用零點分段法將表示為分段函數的形式,由此解不等式求得不等式的解集.(2)將不等式坐標因式分解,結合(1)的結論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,,所以,所以.【點睛】本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎題.18、(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】

(Ⅰ)消去參數φ可得C1的直角坐標方程,易得曲線C2的圓心的直角坐標為(0,2),可得C2的直角坐標方程;(Ⅱ)設M(3cosφ,sinφ),由三角函數和二次函數可得|MC2|的取值范圍,結合圓的知識可得答案.【詳解】(1)消去參數φ可得C1的普通方程為y2=1,∵曲線C2是圓心為(2,),半徑為1的圓,曲線C2的圓心的直角坐標為(0,2),∴C2的直角坐標方程為x2+(y﹣2)2=1;(2)設M(3cosφ,sinφ),則|MC2|,∵﹣1≤sinφ≤1,∴1≤|MC2|,由題意結合圖象可得|MN|的最小值為1﹣1=0,最大值為1,∴|MN|的取值范圍為[0,1].【點睛】本題考查橢圓的參數方程,涉及圓的知識和極坐標方程,屬中檔題.19、(1)或.(2)存在,;【解析】

(1)根據動圓過,兩點,可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設,由動圓與直線相切可得動圓的半徑為;又由,及垂徑定理即可確定的值,進而確定圓的方程.(2)方法一:設,可得圓的半徑為,根據,可得方程為并化簡可得的軌跡方程為.設,,可得的中點,進而由兩點間距離公式表示出半徑,表示出到軸的距離,代入化簡即可求得的值,進而確定所過定點的坐標;方法二:同上可得的軌跡方程為,由拋物線定義可求得,表示出線段的中點的坐標,根據到軸的距離可得等量關系,進而確定所過定點的坐標.【詳解】(1)因為過點,,所以圓心在的垂直平分線上.由已知的方程為,且,關于于坐標原點對稱,所以在直線上,故可設.因為與直線相切,所以的半徑為.由已知得,,又,故可得,解得或.故的半徑或,所以的方程為或.(2)法一:設,由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設,,則得,的中點,則以為直徑的圓的半徑為:,到軸的距離為,令,①化簡得,即,故當時,①式恒成立.所以存在定點,使得以為直徑的圓與軸相切.法二:設,由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設,因為拋物線的焦點坐標為,點在拋物線上,所以,線段的中點的坐標為,則到軸的距離為,而,故以為徑的圓與軸切,所以當點與重合時,符合題意,所以存在定點,使得以為直徑的圓與軸相切.【點睛】本題考查了圓的標準方程求法,動點軌跡方程的求法,拋物線定義及定點問題的解法綜合應用,屬于難題.20、(1)(2)見解析【解析】

(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設,∴在上單調遞減,在上單調遞增.故.∵有解,∴.即的取值范圍為.(2),當且僅當時等號成立.∴,即.∵.當且僅當,,時等號成立.∴,即成立.【點睛】此題考查不等式的證明,注意定值乘變化的靈活應用,屬于較易題目.21、(1)①函數與的圖象在區(qū)間上有交點;②證明見解析;(2)且;【解析】

(1)①令,結合函數零點的判定定理判斷即可;②設切點橫坐標為,求出切線方程,得到,根據函數的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數的單調區(qū)間,確定的范圍即可.【詳解】解:(1)①當時,函數,令,,則,,故,又函數在區(qū)間上的圖象是不間斷曲線,故函數在區(qū)間上有零點,故函數與的圖象在區(qū)間上有交點;②證明:假設存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數在和上單調遞增,又函數在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論