版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10995
ImpactsofDisastersinConflictSettingsEvidencefromMozambiqueandNigeria
KarimaBenBih
ChloeDesjonqueres
BramkaJarafino
ElodieBlanc
SoleneMasson
WORLDBANKGROUP
Urban,DisasterRiskManagement,ResilienceandLandGlobalDepartmentDecember2024
PolicyResearchWorkingPaper10995
Abstract
Thispaperestimatesthedifferentiatedeconomicimpactofnaturalhazard-relateddisasters(thespecificdisastersandclimateshocksstudiedherebeingfloods)whentheyoccurinconflictversusnon-conflictaffectedareas.Existinglit-eratureshowsthatdisastersandclimateshockscancausesignificantdistresstocountriesandpeopleonaninstitu-tionalandhouseholdlevel.However,assumptionsaremadethattheirimpacttendstobelargerinconflict-affectedareas,withlittleevidenceavailableonthedifferentiatedextentofthesedamages.Thispaperinvestigateswhether,andtowhatextent,thepresenceofconflictshasamplifiedtheimpactsoffloodsoneconomicactivityandpeople,andhamperedrecovery.Thepaperappliesa“top-down”approachtoesti-matingthedifferentialimpactsofdisastersandclimate
shocksbetweenconflictandnon-conflictaffectedareasusingsatellite-derivedimageryofnightlightradianceasaproxyforeconomicactivity,alongwithgeospatialfoot-printsoffloods.Theanalysisconsiderstwocasestudies:the2019tropicalcyclonesIdaiandKennethandsubsequentfloodsinMozambique,andtheJuly2022floodsinNige-ria.Usingdifference-in-differenceestimations,theanalysisfindsthattherearesignificantdifferencesindisasterandclimateshockimpactsandrecoverybetweenconflictandnon-conflictaffectedareas.Particularly,thereisagreaterdeclineineconomicactivityandalongerrecoverytimeinconflictaffectedareas,asproxiedbythegreaterchangeintheintensityofnightlightradiance.
ThispaperisaproductoftheUrban,DisasterRiskManagement,ResilienceandLandGlobalDepartment.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/
prwp.Theauthorsmaybecontactedatkbenbih@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
ImpactsofDisastersinConflictSettings:EvidencefromMozambiqueandNigeria
Novembre20,2024
KarimaBenBih,WorldBank
ChloeDesjonqueres,WorldBankBramkaJarafino,WorldBank
ElodieBlanc,MotuEconomicandPublicPolicyResearchCenterSoleneMasson,WorldBank
Keywords:EconomicImpactsofDisastersinCon?ict,Climateshocks;EarthObservations;NPP-VIIRS;Floods;Nigeria;Mozambique;Con?ictsin?uenceonDisasterImpactsandRecovery;GDP.
JELClassi?cation:D74;O23;O47;O57;Q34;Q54.
TheauthorsaregratefultoStephaneHallegatte,OscarIshizawa,andJunRentschlerfortheirthoughtfulcomments,suggestions,andguidance.
2
Introduction
Theaimofthisstudyistoexaminethedifferentialimpactofdisastersandclimateshocksonpopulationsincon?ict-affectedregions,speci?callyinvestigatingtherepercussionsof?oodingincon?ictversusnon-con?ictareas.Usingremotesensingtechnology,weattempttoovercomethechallengeofdatascarcityincon?ict-affectedcountries,allowingustoaccountforshort-termimpactsofrecentdisasterandclimateshockevents.Despitetheinherentlimitationsofusingnightlightintensityasaneconomicactivityindicator,itprovidesanempiricalfoundationfortheanalysisandenoughobservationsforanex-postquasi-experimentalimpactevaluation.Weemployadifference-in-differenceeconometricapproach,usingsatelliteimageryofnightlightradiancealongsidegeospatialdataon?oodandcon?ictevents.ThismethodologicalframeworkisappliedtoassesstheaftermathoftheMarch-April2019FloodsinMozambiquefollowingCyclonesKennethandIdai,aswellasthe2022?oodsspanningJulytoOctoberinNigeria.
Resultsshowsigni?cantdisparitiesintheeffectsofdisastersandclimateshocksbetweencon?ict-affectedandnon-con?ict-affectedareas.Speci?cally,weobserveamorepronounceddeclineineconomicactivitiesincon?ict-affectedregions.
Thepaperisstructuredasfollows.The?rstsectionoutlinesthecontextof?oodandcon?icts.Itpaysattentiontotheinterconnectednessofcon?ictanddisastersandclimateshocks,outliningthemethodologyandempiricalstrategyderivedtoestimatesuchex-postimpact.Inthesecondsection,wepresenttheresultsandsupportingdataderivedfromthestudy,includingthecasestudiesonMozambiqueandNigeria.Finally,wediscusslimitationsaswellasbroaderimplicationsbeforeconcluding.
Context:Floodimpactandcon?ictaffectedpopulation(Literature)
1.Impactof?ood
Quantitativeeconomicanalyseshavefrequentlyusednightlightradianceasproxyforeconomicactivity(Chen&Nordhaus,2011;Hendersonetal.,2012).Thesehavealsobeenusedtoestimatetheimpactsofweathervariabilityanddisastersandclimateshocks(Bertinelli&Strobl,2013;Elliottetal.,2015;Felbermayretal.,2022;Heger&Neumayer,2019;MirandaMonteroetal.,2017)and,morespeci?cally,?oods(Kocornik-Minaetal.,2020).Mostanalysesusingnightlightdatausuallydemonstrateanegativeimpactofdisasterandclimateshocksonnightlightsbutwitheffectsresorbingwithintheyearfollowingtheevent(Bertinelli&Strobl,2013;Elliottetal.,2015;Gillespieetal.,2014).Schippers&Botzen(2023)?ndthatforaseveredisastersuchasHurricaneKatrina,theeffectcanbelongerlasting.
However,thereisadebateabouttheaccuracyofnightlightsasaproxyforeconomicactivity.Criticsarguethatnightlightintensitymaynotcaptureeconomicactivityaccuratelyinallcontexts,suchashighlyruralareas,wherechangesinlightingefficiencycouldaffecttheamountoflightobservedwithoutnecessarilyre?ectingchangesineconomicactivity.Possiblyotherculturalandsocialfactorsorgovernmentpoliciesonlightingcouldalsoin?uencetheamountofnightlightobserved.
3
Despitetheseconcerns,nightlightshaveseveraladvantagesasadatasource.Theyaregloballyavailable,providingcoverageeveninregionswhereeconomicdatamightbescarceorunreliable.Nightlightsalsohaveastandardspatialresolutionandtimeintervals,whichallowsforconsistentcomparisonsovertimeandacrossdifferentgeographicareas.Whenprocessedandinterpretedcorrectly,takingintoaccountthepotentiallimitationsandbiases,nightlightdatacanindeedserveasausefulproxyfortheintensityofeconomicactivity(Gibsonetal.,2021).
2.Relationshipbetweendisasterandcon?ict-affectedpopulation
Explicitstudiesoftherelationshipbetweendisasterandclimateriskandcon?icthavegainedtractionoverthepastdecade(Siddiqi,2018),speci?callyfocusingonco-locationandcausationdebatesassociatedwithclimate-relatedhazards,violentandarmedcon?ict,andinsecurity(Gemenneetal.,2014;Gleditsch,2012).Often,previousstudieshavefocusedontheimpactsofdisastersoncon?icts–whethertheyexacerbateexistingcon?icts,ignitenewones,orinsomecaseshaltongoingcon?icts(Nel&Regharts,2008;Schleussneretal.,2016;Slettebak,2012;Ghimireetal.,2015;Nardullietal.,2015).Duetosuchuncertainimpactsofdisastersanddisasterrecoveryeffortoncon?icts,otherstudiesexplorehowdisasterriskreductionandrecoverymeasuresshouldbedonedifferentlyincon?ictcontexts(Brzoska,2018;Petersetal.,2019;WorldBank,2016).
Despitethegrowingbodyofliteraturerelatedtotheintricaciesofdisastersandcon?icts,lessattentionhasbeengiventounderstandingandquantifyingthein?uencesofcon?ictsondisasterimpacts–theadditionaleconomicimpactsofdisastersshouldtheytakeplaceincon?ictareasanditseffectoncon?ict-affectedpopulation–aswellasthecausalpathwaysandmechanismsbehindsuchadditionalimpacts.Theabsenceofcomprehensiveeconomicdataandgroundtruthdatatovalidatedisasterimpacts,coupledwiththecomplexityofde?ningcon?ict-affectedpopulationsareamongthescienti?cchallengesprohibitinganalyzingthein?uenceofcon?ictsondisasterimpacts.Thispaperseekstoaddressthisgapandsupportfurtherquantitativeanalysesontheadditionalimpactonhouseholds’welfareandnations’economicgrowthincountriesexperiencingthesecompoundedcrises.
EmpiricalstrategyData
Inthisstudy,weusepixel-levelgeospatialdata,includingnightlights,?oodfootprints,populationdensity,andadministrativeboundaries,toeconometricallyanalyzethespeci?ceffectsof?oodeventsinMozambiqueaswellasNigeria'scon?ictandnon-con?ictaffectedregions.
Nightlightsdata
Furthermore,weutilizecompositeimagesofnighttimeradiancedatacapturedbytheVisibleInfraredImagingRadiometerSuite(VIIRS)sensoraboardtheNASA-NOAASuomisatellite.Thesemonthlycompositesareavailablesince2012ataresolutionof15arcsecondsby15arcseconds(approximately463metersattheequator).VIIRSDayNightBands(DNB)dataexcludegridcellsaffectedbylightning,straylight,lunarillumination,andcloudcover(Elvidgeetal.,2017).WefavorVIIRSdataovertraditionallyuseddatafromtheDefenseMeteorologicalSatelliteProgram(DMSP)
4
duetoseverallimitationsidenti?edinthelatter,includingblurring,lackofcalibration,top-coding,andpoorsuitabilityasaGDPproxyinruralareas(Gibsonetal.,2021).
ToaddresschallengesassociatedwithusingVIIRSnightlightsdataasaproxyforeconomicactivity(Skou?asetal.,2021),weapply?lterstoremovepixelswithextremevalues(i.e.,werestrictthesampletovaluescomprisedbetweenthe1stand99thpercentiles)andaccountforthenumberofobservationsavailableperpixel.
1
Wecalculatetheaveragenightlightradiancemonthlyspanningfrom1to6monthsbeforeandaftertheoccurrenceofthe2019?oodsinMozambiqueandthe2022?oodsinNigeria.Twovariablesarecomputed:"avg_rad,"representingthenightlightradianceatthe?oodedpixellevel,and"avg_radBuff05"whichaveragesforeach?oodedpixelthenightlightradianceofthepixelitselfandadjacentpixelswithina0.5-kilometerbuffer.
2
Thelattervariableispreferredtoensuremaximumobservationavailabilityandtocapturetheimpactonindirectlyaffectedgridcells.
3
Wealsoextractedtheassociatedvariables"cf_cvg"and"avg_cvgBuff05",whichindicatethenumberofcloud-freeobservationsinthemonthusedtocalculateaveragenightlightradiance.
4
Flooddata
FloodeventsaredeterminedbasedonthemethodologyoutlinedbyDeVriesetal.(2020).WeuseS1GroundRangeDetectedscenesfromtheSyntheticApertureRadarsensorsonboardtheSentinel-1satellite,partoftheEuropeanSpaceAgency'sCopernicusprogram(ESA,2023).ThesescenesprovidedataonZ-scoresderivedfromSARbackscattertimeseriesofsinglebandco-polarizationverticaltransmitverticalreceive(VV)anddualcross-polarizationverticaltransmithorizontalreceive(VH).SinceOctober2014,thisdatahasbeenavailableevery6daysata10-meterresolution.
Floodsarede?nedastheunexpectedpresenceofwaterobservedinanygivenpixel.Todistinguish?oodsfrompermanentorseasonallyoccurringsurfacewater,weutilizethehistoricalLandsat-derivedmonthlywaterprobabilitiesdatasetproducedbytheEuropeanCommission’sJointResearchCentre(Pekeletal.,2016).Floodcon?denceiscategorizedashighifbothVVandVHZ-scoresfallbelowtheidenti?edthresholds,andasmediumifonlyoneofthesepolarizationsisbelowthethresholds.Weclassify?oodsinareasnotdesignatedaspermanentopenwater(withaprobabilityofwatergreaterthan95%)orwithahistoricalinundationprobabilitylessthanorequalto25%.Foreachcasestudy,wepreselectahistoricalreferenceperiodbasedonexistingknowledgeofpast?oodingeventsintherespectivearea.
Con?ictdata
Con?ictareasareidenti?edutilizinggeocodeddatasourcedfromtheArmedCon?ictLocation&EventDataProject(ACLED)database(ACLED,2023),coveringtheperiodfromJanuary2012toDecember2023forNigeriaandfromJanuary2016toDecember2023inMozambique.Forthepurposeofthisstudy,con?ict,asde?nedbytheWBG(2024)is,“astateofacuteinsecurityresultingfromtheuseoflethalforcebyagroup—encompassingstateforces,organizednon-stateentities,orotherirregularbodies—drivenbyapoliticalpurposeormotivation.Suchforcemaymanifest
1Pixelswithnocloud-freeobservationsareexcluded.
2Apixelisaround100m2,wetestedwithoutbuffer,500mand1kmandchosea500mbuffertointroducemorevariationofnightlightintensitywithinfloodedpixels.
3Atimeseriesdepictingbothvariablesisprovided
inFigure16
intheappendicesforNigeria.
4Thecorrespondingtimeseriesforispresented
inFigure17for
Nigeria.
5
bilaterally—involvingengagementsamongmultipleorganized,armedfactions,occasionallyleadingtocollateralcivilianharm—orunilaterally,whereinagrouptargetsciviliansdeliberately.”Furthermore,forthemostprecisedepictionofareasseverelyaffectedbycon?ict,fatalitiesstemmingfromprotests,riots,andstrategicdevelopment(asperACLEDdata)havebeenexcluded,maintainingconsistencywiththeWBGClassi?cationofFragilityandCon?ictSituation’s(FCS)objectivesandthescopeofthisstudy.Ouranalysisfocusesoncon?ictrecordscategorizedas‘Battles’,‘Explosions/Remoteviolence’,and‘Violenceagainstcivilians’.Thesetypesofcon?ictsareselectedduetotheirviolentnature.
Settlementdata
Todeterminetheurbanizationlevel,weusetheGlobalHumanSettlementLayer(GHSL)whichcombinesgriddedpopulationdataestimatedbyCIESINGPWv4.11GHS-POPR2023andbuilt-upsurfaceinformationfromLandsatandSentinel-2dataGHS-BUILT-SR2023(Schiavinaetal.,2023).
5
Thesettlementdataareavailableatthe1kmresolution.Weconsiderthedatafortheyear2020,whichistheclosestavailabletothetimeperiodofinterestforbothcountries.IncaseofNigeria,wede?ned‘urban’areasascellsde?nedashigh-densitycluster,
6
‘suburban’asmoderate-densitycluster,
7
‘rural’asruralandlow-densityclusters
8
and‘Uninhabited’asverylowdensityruralandwatercoveredareas
(Figure1)
.
9
5InGoogleEarthEngine,thisImagecollectionisaccessiblethrough
/earth
-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_SMOD.
6The‘urban’categoryincludestheclasses30:“UrbanCentregridcell”,23:“DenseUrbanClustergridcell”.
7The‘suburban’categoryincludestheclasses22:“Semi-denseUrbanClustergridcell”and21:“Suburbanorperi-urbangridcell”.
8The‘rural’categoryincludestheclasses13:“Ruralclustergridcell”and12:“LowDensityRuralgridcell”.
9The‘uninhabited’categoryincludestheclasses11:“Verylowdensityruralgridcell”and10:“Watergridcell”.
6
Figure1.SettlementcategoriesinNigeria
Populationdata
Tomaintainconsistencywithsettlementdata,populationdensityestimatesatthegridcelllevelaresourcedfromtheHigh-ResolutionSettlementLayer(HRSL)dataset(FacebookConnectivityLabandCenterforInternationalEarthScienceInformationNetwork-CIESIN-ColumbiaUniversity.,2016).
Thesedataareavailableataresolutionof1arc-second(approximately30meters)fortheyear2020.Additionally,alternativepopulationdataareextractedfromtheWorldPopdatabase(Linardetal.,2012;WorldP,2024),availableataresolutionof100metersfortheyear2020.
Table1
belowdescribesthevariablesusedintheanalysisof?oodandcon?ictimpactsoneconomicactivity,asmeasuredbynightlightchanges.The‘lat’(latitude)and‘lon’(longitude)variablesallowforlocationmappingandsituatingtheanalysisspatially.The'months_EE'variableaidsinunderstandingthetemporaleffectsof?oodsbyindicatingmonthsaftertheeventandnegativevaluesindicatingthemonthspreceding.
7
The'?ood'variableiscrucialforassessingtheimpactof?oodswithvaryingdegreesofdatareliability.'PopDens'providesinsightsintohowpopulationdensitymightin?uenceorbein?uencedbyspeci?c?oodevents.Thevariables'cf_cvgBuff05'and'avg_radBuff05'describedabove,measureeconomicactivitythroughcloudobservationsandnightlightradiance,respectively.Additionally,theyareaveragedoveradjacentpixelstoprovidecontextforeachlocation.
‘Treated'and'Treated_after'distinguishareasaffectedbycon?ictbeforeandafterthe?oodineachcountry:March-April2019aremonthswherethe?oodoccurredinMozambiquewhileJuly2022wasconsideredasthe?oodingmonthinthisanalysisforNigeria.Thisisessentialfordeterminingthecausalinferenceofcon?ictimpact.'Settlement'and'Urban_Suburban'categorizeurbanizationlevelstounderstandhowdifferenttypesofareasareaffectedbyandrespondtoboth?oodsandcon?ictevents.Lastly,'Fatalities'providesadirectmeasureofthehumancostofcon?icts.
Thesevariablescollectivelyenableacomprehensiveanalysisoftheeffectsof?oodsandcon?ictswhentheyco-occurinthesamelocation.Theyareusedtoanalyzetheimpactsof?oodsandcon?ictonspeci?caspectsofeconomicactivity,aspotentiallyinferredbynightlightchanges.
Table1
describesthesevariables,theirunitsofmeasurements,andhowtheywillbeusedintheanalysis.
Table1.Descriptionofvariables
Variables
Description
Unit
lat
latitude
Decimalcoordinates
lon
longitude
Decimalcoordinates
months_EE
Monthsincetheevent
Months(positiveifafterevent,negativeifbeforeevent)
flood
Floodvariable
=1or2ifmediumreliability,=3ifhighreliability
PopDens
HRSLpopulationdensity
Person/km2
cf_cvgBuff05
Totalnumberofcloud-free
observationsthatwentintoeach
pixel(averagedovertheadjacent
pixels)
avg_radBuff05
Averagenightlightradiancevalues(averagedovertheadjacentpixels)
nanoWatts/sr/cm2
Treated
Dummyvariablerepresenting
conflict-affectedarea
=1ifsubjecttoaconflictwithinthebufferareabeforethefloods,=0otherwise
Treated_after
Dummyvariablerepresenting
conflict-affectedarea
=1ifsubjecttoaconflictwithinthebufferareaafterthefloods,=0otherwise
settlement
DegreeofUrbanization
=11ifuninhabited,=12ifrural,=21ifsuburbanand=23ifurban
Urban_Suburban
Urbanizationdummyvariable
=1ifurbanorsuburban,=0otherwise
Fatalities
Totalnumberoffatalitiesassociatedwithconflictswithinthebufferarea
Overallempiricalstrategy
Todifferentiatetheimpactof?oodsoneconomicactivitypriortothe?oodbetweencon?ict-affected(treatmentgroup),andnon-con?ictaffected(controlgroup)areas,we?rstrestrictthesampleto?ood-impactedpixels.Wethenapplythedifference-in-differencesregressionmethod,aquasi-experimentaltechniquecommonlyusedforex-postimpactevaluations.Theunderlyingconcept
8
involvescomparingtwogroupsovertime.Duetotheirdistinctcharacteristics,weexpectdifferencesinoutcomesbetweenthegroups.However,theevolutionofthesedifferingoutcomesovertime,whileholdinggroupcharacteristicsconstant,shouldfollowasimilartrend(i.e.,thecommontrendassumption)untilanexogenousshockoccurs.Thepresenceofthisparalleltrendiscrucialforestablishingcausalevidenceofimpact.Thedifference-in-differencesresearchdesignisparticularlysuitablefor‘event’studiesandthequanti?cationoftheimpactofunexpectedshocksoneconomicoutcomes.Thismethodhasbeenextensivelyemployedinthereviewedliterature(Card&Krueger,2000;Galianietal.,2005).Inourcasestudies,weareusingthecanonicaldifferenceindifference,whichmeanstwogroupsandtwotimeperiods(beforeandafter).
Thedifference-in-differenceregressionisspeci?edasfollows:
yi,t=Treatediβ1+postperiodtβ2+Treatmenti,tβ3+covariatesi,tβ4+εit(1)
whereyi,tistheaveragelogofnightlightsdataforeach?oodedpixeliattimet.Theuseofremotesensingdataallowsustoexploreimmediatetoshorttermimpactofthe?oodoverourtwogroups.Treatediisadummyvariableequalto1for?oodedpixelilocatedwithinthecon?ictbufferzonebeforethe?oodevent,andto0for?oodedpixelilocatedinanon-con?ictaffectedareabeforethe?oodevent.postperiodtisadummyvariablethatrepresentstheperiodaftertheexogeneousshock.
10
Treatmentitisthetreatmentvariable,i.e.,thevariableofinterestinadifference-in-differencespeci?cationwhichaccountsfortheinteractionofthetreatedandPostperiodvariable;covariatesitisthesetofadditionalexplanatoryvariablesuspectedtoimpactthelevelofnightlightsradiance;andεitisanindependentandidenticallydistributederrorterm,clusteredattheadministrativelevel2,toavoidspatialautocorrelation.
Oneofthechallengesinouranalysisisthede?nitionofcon?ict-affectedareas.Con?icteventsinMozambiqueareclusteredgeographicallyassuchthatitisreadilyascertainablewhatregionsaremostimpactedbytheseevents,andthusde?nedascon?ict-affectedareasforthepurposeofthisstudy.
Duetothecomplexityandwidegeographicalspanofviolentandnon-violentcon?icteventsinNigeria,con?ict-affectedareasinNigeriaarenotde?nedbasedonnumberofeventsalonebutarebasedontheWBGFCScon?ictclassi?cation.Thisclassi?cationusespubliclyavailabledatatoannuallyassesscountries,pinpointingthosemostaffectedbyfragilityandcon?ict.ThismethoddifferentiatesbetweenterritoriesexperiencingFragilityand/orCon?ictsituations.Alignedwiththisde?nition,thestudyemploysthefollowingcon?ictindicatorsidenti?edbytheFCSindextodelineatecon?ict-affectedareasinNigeriaattheLocalGovernmentArea(LGA)scale:
10Thisvariabletakesavalueof1ift=August2020toestimatetheeffect1monthafterthedisaster,t=November2020fortheeffect3monthsafterthedisaster,etc.and0otherwise.
9
(1)Forongoingcon?ictaccordingtoACLED,(a)anabsolutenumberofcon?ictdeathsabove250,and(b)above2deathsper100,000population.
(2)ForrapidlydecliningsecuritysituationsaccordingtoACLED,(a)anabsolutenumberofcon?ictdeathsabove250,(b)between1and2deathsper100,000population,and(c)thenumberofcasualtieshasmorethandoubledinthepastyear.
Differenceindifferencemethodologyreliesondifferentassumptionswherethecommontrendisthemostimportantone.Tovalidatethisassumptionofcommontrendsbeforethe?ood,indicatingthatthedependentvariableforbothgroupswouldhavecontinuedmovingsimilarlyintheabsenceoftheextremeevent,weconductatestbycomparingchangesinthedependentvariableforthetreatmentandcontrolgroupsovermultipleperiodsprecedingthe?oods(i.e.estimatethedifference-in-differencebetweent-2andt-1,thet-3andt-2,etc.).Thisanalysishelpsascertainwhethertheeconomictrajectoriesofthetwogroupswereindeedparallelbeforetheoccurrenceofthe?oodevents.Theregressionisspeci?edas:
yi,t=Treatediβ1+postperiodtβ2+Treatmenti,tβ3+covariatesi,tβ4+εit(2)
Variablesarethesameasspeci?cation(1)buttheperiodofinterestisnotthesame.Weprovidestatisticaltestsaswellasthecommontrendvisuallyrepresentedforeachofourcasestudy.
Casestudyselection
Thestudy’sfocusondisasterimpactsincon?ictvsnoncon?ictaffectedareaslimitsthepoolofcountrycasestudies.Thereareseveralaspectsthatdeterminethechoiceofthecasestudycountries.First,theselectedcountriesneedtohavegeographicallylocalizedcon?icts,allowingforacontrolledcomparisonwherecon?ictistheprimarydifferingfactorofdisasterimpacts.Second,thereisarequirementthattheselectedcountrieswereaffectedbyarapidonsetdisasterinrecentyears,toincreasethepossibilityofavailabledatainassessingthedisaster’simpacts.Ifmultiplecountriesareselected,therapid-onsetdisastereventshadtohappenwithinthesametimeframe.Thiscriterionensuresthatthecasestudiesprovideafocusedexaminationoftheimpactofdisastersoneconomicactivitiesincon?ictsettingvsnoncon?ictsettings,withouttheconfoundingeffectsofdifferentcountryconditionsortimelinesofdisasterevents.Third,thedisasterfootprintsshouldcoverasubstantialgeographicalextentoftheselectedcountries’areaasopposedtolocalizeddisasters.Thiscriterionistoensurethattherearebothcon?ict-andnon-con?ict-affectedareashitbythedisaster.Giventhecriteriaabove,weselectedthe2019TropicalCyclonesIdaiandKennethinMozambiqueandtheJuly2022?oodsinNigeriaascasestudies.Furthermore,thetwocountrieshavecomparablecontextsintermsofcon?ictcharacteristicswhicharecrucialforisolatingthevariableofcon?ictincomparativeanalysis.
Mozambiquecasestudy:2019TropicalCyclonesIdaiandKenneth
The?rstcasestudyfocusesonthe?oodsinMozambiqueafterTCIdaiandKenneth.In2019,MozambiquewashitbytwoTropicalCyclones(TC),Idai(March4-15)andKenneth(April25-28),bothofwhichhavebeenquali?edasamongthestrongestTCsonrecordintheSouthernHemisphere(Charruaetal.,2021).Thenortheasternregionofthecountryischaracterizedbyawidespreadlong-
10
termhumanitariansituationduetotheongoingcon?ict,datingbackto2017.Asdepictedin
Figure
2,
TCIdai?rstmadelandfallonMarch4,2019,untilMarch9,beforechangingd
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四平2025年吉林四平市投資促進服務中心選調筆試歷年參考題庫附帶答案詳解
- 唐山2025年河北唐山職業(yè)技術學院秋季高層次人才選聘14人筆試歷年參考題庫附帶答案詳解
- 臺州浙江省臺州生態(tài)環(huán)境監(jiān)測中心合同工招聘筆試歷年參考題庫附帶答案詳解
- 臺州2025年浙江臺州溫嶺市省一級重點中學面向普通高校畢業(yè)生招聘高中教師筆試歷年參考題庫附帶答案詳解
- 南充四川南充儀隴縣考調工作人員13人筆試歷年參考題庫附帶答案詳解
- 南京2025年江蘇南京江北新區(qū)第一批招聘骨干教師10人筆試歷年參考題庫附帶答案詳解
- 十堰2025年湖北十堰市教育局直屬學校招聘128人筆試歷年參考題庫附帶答案詳解
- 2026年醫(yī)療設備操作與維護實戰(zhàn)題
- 安全員A證考試題型+答案(考點題)及參考答案詳解【輕巧奪冠】
- 安全員A證考試通關模擬題庫及答案詳解(名校卷)
- 百人公司年會策劃方案
- 青少年法律知識競賽試題及答案
- 鏈式輸送機傳動系統(tǒng)設計
- 加班工時管控改善方案
- 2025分布式數(shù)據(jù)庫 OceanBase 架構演進與業(yè)務場景實踐
- 2025年軍工企業(yè)招聘考試面試流程與注意事項詳解
- 《昆蟲記》中的昆蟲圖片
- 鐵路施工安全檢查日志范本
- 五層外架施工方案
- 供應鏈中斷應急預案(商品斷供、物流中斷)
- 山東省青島市李滄、平度、西海岸、膠州2026屆九年級數(shù)學第一學期期末綜合測試試題含解析
評論
0/150
提交評論