石家莊財(cái)經(jīng)職業(yè)學(xué)院《分布式數(shù)據(jù)庫(kù)原理與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
石家莊財(cái)經(jīng)職業(yè)學(xué)院《分布式數(shù)據(jù)庫(kù)原理與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
石家莊財(cái)經(jīng)職業(yè)學(xué)院《分布式數(shù)據(jù)庫(kù)原理與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)石家莊財(cái)經(jīng)職業(yè)學(xué)院《分布式數(shù)據(jù)庫(kù)原理與應(yīng)用》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)的可解釋性對(duì)于決策支持很重要。假設(shè)要向管理層解釋一個(gè)預(yù)測(cè)銷售趨勢(shì)的模型結(jié)果,以下關(guān)于數(shù)據(jù)可解釋性方法的描述,正確的是:()A.使用復(fù)雜的數(shù)學(xué)公式和技術(shù)術(shù)語(yǔ),讓管理層難以理解B.不提供任何解釋,讓管理層自行判斷C.采用簡(jiǎn)單直觀的圖表、案例分析和通俗易懂的語(yǔ)言,解釋模型的輸入、輸出和決策依據(jù),幫助管理層做出明智的決策D.認(rèn)為數(shù)據(jù)可解釋性不重要,只要模型預(yù)測(cè)準(zhǔn)確就行2、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架變得非常重要。假設(shè)你有數(shù)十億行的銷售數(shù)據(jù)需要進(jìn)行分析,以下關(guān)于分布式計(jì)算框架的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.考慮框架的易用性和學(xué)習(xí)成本,選擇容易上手的框架B.關(guān)注框架的性能和可擴(kuò)展性,能否處理大規(guī)模數(shù)據(jù)并快速得出結(jié)果C.選擇開(kāi)源且社區(qū)活躍的框架,以便獲取支持和資源D.依據(jù)公司已有的技術(shù)棧和團(tuán)隊(duì)熟悉程度來(lái)決定框架3、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測(cè)一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測(cè)方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類的方法4、在進(jìn)行假設(shè)檢驗(yàn)時(shí),如果p值小于設(shè)定的顯著性水平(如0.05),我們通常會(huì)得出以下哪種結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無(wú)法確定是否拒絕原假設(shè)D.需要重新進(jìn)行實(shí)驗(yàn)5、在數(shù)據(jù)分析中,對(duì)于一個(gè)包含大量金融交易數(shù)據(jù)的數(shù)據(jù)集,需要檢測(cè)是否存在異常交易行為,例如突然的大額交易、頻繁的小額交易等。以下哪種技術(shù)可能在異常檢測(cè)中發(fā)揮重要作用?()A.聚類分析B.決策樹(shù)C.孤立森林算法D.以上都不是6、對(duì)于一個(gè)時(shí)間序列數(shù)據(jù),若要預(yù)測(cè)未來(lái)幾個(gè)時(shí)間點(diǎn)的值,以下哪種模型較為適用?()A.移動(dòng)平均模型B.指數(shù)平滑模型C.自回歸模型D.以上都可以7、數(shù)據(jù)分析中的分類算法用于將數(shù)據(jù)分為不同的類別。假設(shè)要構(gòu)建一個(gè)分類模型來(lái)預(yù)測(cè)客戶是否會(huì)流失,以下哪種算法可能對(duì)處理不平衡的數(shù)據(jù)集(流失客戶數(shù)量遠(yuǎn)少于未流失客戶)表現(xiàn)較好?()A.邏輯回歸B.決策樹(shù)C.支持向量機(jī)D.隨機(jī)森林8、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是一個(gè)重要的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的目的,錯(cuò)誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)的質(zhì)量B.統(tǒng)一數(shù)據(jù)的格式和單位,便于后續(xù)的分析和處理C.對(duì)數(shù)據(jù)進(jìn)行編碼和轉(zhuǎn)換,使其適合特定的數(shù)據(jù)分析方法D.增加數(shù)據(jù)的數(shù)量,提高數(shù)據(jù)分析的結(jié)果的可靠性9、假設(shè)要分析一個(gè)醫(yī)療保健系統(tǒng)中的患者病歷數(shù)據(jù),包括診斷結(jié)果、治療方案、康復(fù)情況等,以發(fā)現(xiàn)疾病的趨勢(shì)和治療效果的影響因素??紤]到醫(yī)療數(shù)據(jù)的敏感性和隱私性,以下哪個(gè)方面需要特別注意?()A.數(shù)據(jù)加密和安全保護(hù)B.快速得出分析結(jié)果C.忽略數(shù)據(jù)的隱私問(wèn)題D.公開(kāi)所有數(shù)據(jù)以獲取更多幫助10、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏模式和知識(shí)方面發(fā)揮著重要作用。假設(shè)要從大量銷售數(shù)據(jù)中挖掘潛在的客戶購(gòu)買(mǎi)模式,以下關(guān)于數(shù)據(jù)挖掘技術(shù)選擇的描述,正確的是:()A.僅使用關(guān)聯(lián)規(guī)則挖掘,不考慮其他技術(shù)B.盲目應(yīng)用所有的數(shù)據(jù)挖掘算法,不考慮數(shù)據(jù)特點(diǎn)和業(yè)務(wù)需求C.結(jié)合聚類分析、分類算法和關(guān)聯(lián)規(guī)則挖掘等技術(shù),根據(jù)數(shù)據(jù)特點(diǎn)和問(wèn)題需求選擇合適的方法D.認(rèn)為數(shù)據(jù)挖掘結(jié)果一定準(zhǔn)確,無(wú)需進(jìn)一步驗(yàn)證和解釋11、在數(shù)據(jù)挖掘中,K-Means聚類算法是一種常見(jiàn)的聚類方法。以下關(guān)于K-Means算法的缺點(diǎn),不正確的是?()A.對(duì)初始聚類中心敏感B.容易陷入局部最優(yōu)解C.不能處理非球形的簇D.計(jì)算復(fù)雜度高12、在進(jìn)行數(shù)據(jù)分析時(shí),如果數(shù)據(jù)分布呈現(xiàn)右偏態(tài),以下哪種統(tǒng)計(jì)量更能代表數(shù)據(jù)的集中趨勢(shì)?()A.均值B.中位數(shù)C.眾數(shù)D.標(biāo)準(zhǔn)差13、數(shù)據(jù)分析中的數(shù)據(jù)集成涉及將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要將來(lái)自不同數(shù)據(jù)庫(kù)的客戶信息和交易數(shù)據(jù)集成,以下哪個(gè)問(wèn)題可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)格式不一致B.數(shù)據(jù)字段的命名差異C.數(shù)據(jù)的重復(fù)和沖突D.以上問(wèn)題都很具有挑戰(zhàn)性14、對(duì)于一個(gè)分類問(wèn)題,如果不同類別的樣本數(shù)量差異較大,在評(píng)估模型性能時(shí),以下哪種指標(biāo)需要特別關(guān)注?()A.準(zhǔn)確率B.召回率C.F1值D.以上都是15、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中聚類分析是一種常用的方法。以下關(guān)于聚類分析的描述中,錯(cuò)誤的是?()A.聚類分析可以將數(shù)據(jù)分為不同的類別,使得同一類中的數(shù)據(jù)具有相似的特征B.聚類分析的結(jié)果可以用聚類中心和聚類半徑來(lái)表示C.聚類分析可以用于數(shù)據(jù)的分類和預(yù)測(cè)D.聚類分析的算法有多種,如k-means聚類、層次聚類等16、在數(shù)據(jù)分析的方差分析(ANOVA)中,以下關(guān)于組間方差和組內(nèi)方差的描述,錯(cuò)誤的是()A.組間方差反映了不同組之間的差異B.組內(nèi)方差反映了組內(nèi)個(gè)體之間的差異C.如果組間方差顯著大于組內(nèi)方差,說(shuō)明不同組之間存在顯著差異D.組間方差和組內(nèi)方差的比值越大,越說(shuō)明組間差異不顯著17、在處理大量數(shù)據(jù)時(shí),為了提高數(shù)據(jù)處理效率,以下哪種數(shù)據(jù)結(jié)構(gòu)更適合快速查找和插入操作?()A.數(shù)組B.鏈表C.棧D.隊(duì)列18、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)經(jīng)驗(yàn)進(jìn)行手動(dòng)修正,無(wú)需考慮數(shù)據(jù)的分布和規(guī)律C.使用均值或中位數(shù)來(lái)填充缺失值,不考慮數(shù)據(jù)的特征和潛在影響D.采用合適的算法和工具,識(shí)別并處理重復(fù)記錄、缺失值和錯(cuò)誤數(shù)據(jù),同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)需求19、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),數(shù)據(jù)標(biāo)準(zhǔn)化或歸一化是常見(jiàn)的操作。假設(shè)要對(duì)一組包含不同量綱的特征數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化,以下哪種方法可能是最常用的?()A.最小-最大標(biāo)準(zhǔn)化B.Z-score標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上方法使用頻率相同20、對(duì)于一個(gè)具有時(shí)間戳的數(shù)據(jù)集合,若要進(jìn)行時(shí)間序列分析,以下哪個(gè)工具或庫(kù)可能會(huì)被使用?()A.PandasB.NumPyC.MatplotlibD.Scikit-learn二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋關(guān)聯(lián)規(guī)則挖掘的概念和算法,如Apriori算法,說(shuō)明關(guān)聯(lián)規(guī)則在購(gòu)物籃分析、推薦系統(tǒng)中的應(yīng)用。2、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的因果發(fā)現(xiàn),包括基于觀測(cè)數(shù)據(jù)和實(shí)驗(yàn)數(shù)據(jù)的方法,并舉例分析。3、(本題5分)在數(shù)據(jù)倉(cāng)庫(kù)中,如何進(jìn)行數(shù)據(jù)的ETL(Extract,Transform,Load)過(guò)程設(shè)計(jì)和優(yōu)化?請(qǐng)說(shuō)明ETL的流程和關(guān)鍵步驟,并舉例說(shuō)明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)一家在線旅游平臺(tái)的自駕游產(chǎn)品數(shù)據(jù)包含路線規(guī)劃、景點(diǎn)選擇、費(fèi)用預(yù)算、用戶評(píng)價(jià)等。探討路線規(guī)劃和景點(diǎn)選擇對(duì)費(fèi)用預(yù)算和用戶評(píng)價(jià)的關(guān)系。2、(本題5分)某在線旅游平臺(tái)掌握了不同目的地的旅游產(chǎn)品預(yù)訂數(shù)據(jù)、用戶評(píng)價(jià)、旅游淡旺季等信息。研究怎樣利用這些數(shù)據(jù)進(jìn)行目的地營(yíng)銷和產(chǎn)品優(yōu)化。3、(本題5分)某視頻平臺(tái)擁有用戶觀看時(shí)長(zhǎng)、視頻類型偏好、付費(fèi)行為等數(shù)據(jù)。分析用戶的內(nèi)容消費(fèi)習(xí)慣,制定內(nèi)容創(chuàng)作和付費(fèi)策略。4、(本題5分)某在線陶藝課程平臺(tái)積累了學(xué)員報(bào)名數(shù)據(jù)、作品展示反饋、課程滿意度等。完善陶藝課程體系和教學(xué)服務(wù)。5、(本題5分)一家連鎖超市收集了各門(mén)店的銷售數(shù)據(jù),涵蓋商品種類、銷售數(shù)量、銷售額、促銷活動(dòng)等信息。探討怎樣利用這些數(shù)據(jù)來(lái)評(píng)估不同促銷活動(dòng)的效果,并制定更有效的促銷方案。四

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論