版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
微專題29與圓有關(guān)的位置關(guān)系
考點(diǎn)精講
構(gòu)建知識(shí)體系
考點(diǎn)梳理
1.點(diǎn)與圓的位置關(guān)系
點(diǎn)在圓外d=OA①r
點(diǎn)在圓上d=OB②r
點(diǎn)在圓內(nèi)d=OC③r
2.直線與圓的位置關(guān)系(2024年首次涉及考查)
位置關(guān)系相離相切相交
d與r的
d④rd⑤rd⑥r(nóng)
關(guān)系
交點(diǎn)的
沒(méi)有公共點(diǎn)有且只有一個(gè)公共點(diǎn)有兩個(gè)公共點(diǎn)
個(gè)數(shù)
示意圖
3.切線的性質(zhì)與判定(6年6考)
(1)性質(zhì)定理:圓的切線⑦于過(guò)切點(diǎn)的半徑(或直徑)
第1頁(yè)共20頁(yè)
(2)性質(zhì):①切線和圓只有一個(gè)公共點(diǎn);②圓心到切線的距離等于圓的半徑;③切
線垂直于過(guò)切點(diǎn)的半徑;④經(jīng)過(guò)圓心且垂直于切線的直線必過(guò)切點(diǎn);⑤經(jīng)過(guò)切點(diǎn)
且垂直于切線的直線必過(guò)圓心
(3)判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
(4)判定方法:①直線與圓公共點(diǎn)已知:連半徑,證垂直;②直線與圓公共點(diǎn)未知:
作垂直,證半徑
4.切線長(zhǎng)與切線長(zhǎng)定理
圖示
在經(jīng)過(guò)圓外一點(diǎn)的圓的切線上,這點(diǎn)與⑧之間的線段的長(zhǎng)
切線長(zhǎng)
度,叫做這點(diǎn)到圓的切線長(zhǎng)
從圓外一點(diǎn)可以引圓的⑨條切線,它們的切線長(zhǎng)⑩,這
切線長(zhǎng)定理一點(diǎn)和圓心的連線平分兩條切線的夾角.(探索并證明切線長(zhǎng)定理*
選學(xué))
5.三角形的內(nèi)切圓
(1)定義:與三角形各邊都相切的圓
(2)圓心O:內(nèi)心(三角形的內(nèi)切圓圓心或三角形三條?的交點(diǎn))
(3)性質(zhì):三角形的內(nèi)心到三角形?的距離相等
(4)角度關(guān)系:如圖③,圖④,∠BOC=90°+∠BAC
1
【知識(shí)拓展】2
任意三角形的內(nèi)切圓直角三角形的內(nèi)切圓
圖③圖④
第2頁(yè)共20頁(yè)
利用等面積法可得:=
r++
利用等面積法可得:=△??
r++
2?????+?-?
利用切線長(zhǎng)定理可得:r=
???
???
2
練考點(diǎn)
1.已知☉O的半徑為3,P為平面內(nèi)一點(diǎn),OP=4,則點(diǎn)P在☉O.(填
“內(nèi)”“上”或“外”)
2.已知圓的半徑為3,圓心到某直線的距離為2,則此直線與圓的位置關(guān)系
為.(填“相交”“相切”或“相離”)
3.如圖,AC是☉O的直徑.
(1)若BC是☉O的切線,則∠ACB=°;
(2)若AB=5,BC=4,AC=3,則BC與☉O.(填“相交”“相切”或“相
離”)
第3題圖
4.如圖,PA,PB是☉O的切線,A,B為切點(diǎn),連接AB,OA,OB,PO,PO
交☉O于點(diǎn)C,交AB于點(diǎn)D,∠OAB=30°.
第4題圖
(1)∠APB的度數(shù)為;
(2)若OA=4,則OP的長(zhǎng)為.
5.如圖,在△ABC中,∠C=90°,AC=3,BC=4,則△ABC的內(nèi)切圓半徑r
=.
第3頁(yè)共20頁(yè)
第5題圖
6.如圖,△ABC的外接圓半徑為5,其圓心O恰好在中線CD上,若AB=CD,
則△ABC的面積為.
第6題圖
高頻考點(diǎn)
考點(diǎn)與切線有關(guān)的證明及計(jì)算(6年6考)
一、切線的判定(6年4考)
方法解讀
1.利用平行證垂直:
當(dāng)需要證明的切線有一條垂線時(shí),可證明過(guò)切點(diǎn)的半徑與這條垂線平行.
2.利用等角轉(zhuǎn)換證垂直:
題干中直接給出角度關(guān)系或給出切線與弦的夾角等于某個(gè)圓周角時(shí),常通過(guò)等角
代換來(lái)證明.
3.利用三角形全等證垂直:
常在“共點(diǎn)雙切線型”圖形中運(yùn)用,通過(guò)連接圓心與兩條切線的交點(diǎn)構(gòu)造全等三
角形來(lái)證得垂直.
4.作垂直,證半徑:
過(guò)圓心作直線的垂線段,證明垂線段長(zhǎng)等于半徑.
方法一連半徑、證垂直
第4頁(yè)共20頁(yè)
例1(利用平行證垂直)核心設(shè)問(wèn)如圖,在等腰△ABC中,AB=AC,以AC為
直徑的☉O交BC于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F.求證:EF是☉O的切線.[2019
廣東24(2)題考查]
例1題圖
例2(利用等角轉(zhuǎn)換證垂直)如圖,AB是☉O的直徑,C是圓上一點(diǎn),過(guò)點(diǎn)C的
直線CD交BA延長(zhǎng)線于點(diǎn)D,且∠DCA=∠B,求證:CD是☉O的切線.
例2題圖
例3(利用三角形全等證垂直)核心設(shè)問(wèn)如圖,在Rt△ABC中,∠ACB=90°,
以BC為直徑作☉O,交AB于點(diǎn)D,點(diǎn)E為AC上一點(diǎn),連接DE.若DE=CE,
求證:DE是☉O的切線.[2020廣東22(1)題考查]
例3題圖
方法二作垂直、證半徑
第5頁(yè)共20頁(yè)
例4核心設(shè)問(wèn)如圖,在Rt△ABC中,∠ACB=90°,以AC上一點(diǎn)O為圓心,
OC長(zhǎng)為半徑作☉O,連接BO,若BO平分∠ABC,求證:AB是☉O的切線.[2024
廣東17(2)題考查]
例4題圖
二、切線性質(zhì)的相關(guān)證明及計(jì)算(6年2考)
方法解讀
1.證明角相等的方法:
(1)根據(jù)直角三角形中兩銳角互余,進(jìn)行等量代換找到對(duì)應(yīng)的角;
(2)根據(jù)平行線與等腰三角形的性質(zhì),進(jìn)行等量代換找到相對(duì)應(yīng)的角;
(3)通過(guò)證明兩個(gè)三角形全等,得到對(duì)應(yīng)的角相等.
2.求線段長(zhǎng)的方法:
(1)若題干中含有30°,45°,60°等特殊角度或出現(xiàn)三角函數(shù)sin、cos、tan時(shí),
考慮利用三角函數(shù)求線段長(zhǎng);
(2)若題干無(wú)特殊角或三角函數(shù),觀察圖形發(fā)現(xiàn)已知邊與所求邊分別所在的三角形
存在相似關(guān)系,考慮作輔助線將所求線段轉(zhuǎn)化到直角三角形中,利用相似三角形
求線段長(zhǎng).
3.證明線段平行的方法:
(1)通過(guò)角之間的等量代換,利用同位角相等、內(nèi)錯(cuò)角相等或同旁內(nèi)角互補(bǔ)的方法
證明兩直線平行.
(2)設(shè)法將兩條線段放在同一個(gè)三角形中,利用中位線(或等分點(diǎn))的性質(zhì)證明兩直
線平行.
第6頁(yè)共20頁(yè)
例5如圖①,在△ABC中,∠A=90°,E是BC上一點(diǎn),以BE為直徑的☉O
與AC相切于點(diǎn)D,連接BD,DE.
例5題圖①
(1)求證:∠ABD=∠CDE;
(2)求證:BD平分∠ABC;
(3)若∠ABD=30°,AD=,求OC的長(zhǎng);
3
(4)如圖②,若F為CD的中點(diǎn),連接EF,∠C=30°,求證:EF∥AB.
例5題圖②
第7頁(yè)共20頁(yè)
真題及變式
命題點(diǎn)切線的判定及性質(zhì)(6年6考)
1.(2020廣東22題8分)如圖①,在四邊形ABCD中,AD∥BC,∠DAB=90°,
AB是☉O的直徑,CO平分∠BCD.
(1)求證:直線CD與☉O相切;
(2)如圖②,記(1)中的切點(diǎn)為E,P為優(yōu)弧上一點(diǎn),AD=1,BC=2.求tan∠APE
的值.?